Melec

STEPPING & SERVO MOTOR CONTROLLER'S OPTION

MPL-29/ALPCIWXP

取扱説明書

(デバイスドライバ AL I/O ユニット編)

CB-09

CB-08

CB-34/IO

本製品を使用する前に、この取扱説明書を良く読んで 十分に理解してください。 この取扱説明書は、いつでも取り出して読めるように 保管してください。

<u>目次</u>

1.	概要	. 3
2.	取扱説明書の構成	. 3
3.	ご使用になる前に ····································	
	3-2. この取扱説明書の見方····································	
	3-3. AL 通信上の通信エラー ····································	
4.	AL マスターボード対応 DLL	
	4-1. 環境設定	
	4-2. 構造体と関数	
	RESULT 構造体······	· 7
	環境設定ツール情報構造体	. 9
	スレーブ情報構造体 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10
	環境設定ツール関数	11
	環境設定直接関数 ······	11
	環境設定ツール情報読み出し関数	12
	関数環境設定問い合わせ関数	12
	AL 通信エラー累計回数読み出し関数 ·······	13
	AL 通信エラー累計回数クリア関数 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	スレーブ情報読み出し関数	14
	汎用 I/O PORT 読み出し関数 ····································	
	汎用 I/O PORT 書き込み 関数 ····································	16
5.	AL I/O ユニット対応 DLL	
	5-1. 汎用 I/O PORT の制御 ···································	17
	5-2. 構造体と関数	
	RESULT 構造体 ···································	19
	汎用 I/O PORT オープン関数 ····································	21
	汎用 I/O PORT クローズ関数 ····································	22
	汎用 I/O PORT ー括読み出し関数 ····································	23
	汎用 I/O PORT 指定信号読み出し関数	24
	汎用 I/O PORT 一括書き込み関数 ····································	26
	汎用 I/O PORT AND 書き込み関数・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	汎用 I/O PORT OR 書き込み関数 ····································	
	汎用 I/O PORT 指定信号 LOW レベル書き込み関数 ····································	29
	汎用 I/O PORT 指定信号 HIGH レベル書き込み関数 ····································	30
	ラッチ機能選択書き込み関数	31
	ラッチェッジ選択書き込み関数 ····································	
	ラッチ機能選択読み出し関数	
	ラッチエッジ選択読み出し関数	
	ラッチクリア書き込み関数	
6.	ソフト開発に必要なファイル	36
7.	サンプルプログラム	
	7-1. 概要	
	7-2. ご使用になる前に	
	7-3. 仕様	38
8.	トラブルシューティング	39

1. 概要

MPL-29/ALPCIWXP は、DOS/V パソコンの Windows 上で CB-09(AL シリーズ対応マスターボード)を使用し、AL シリーズ (弊社オリジナルステッピング&サーボモータコントローラシステム)上のスレーブユニットを動作させる ための DLL ベースのドライバ関数です。

各関数は、次に示すスレーブユニット上の PORT のアクセス (読み出し/書き込み)を行う為のものです。スレーブユニット上の PORT については、各スレーブユニットの取扱説明書を御覧ください。

- © C-770AL
- © CB-08
- © CDB-5420-AL770
- © CAD-5410-AL770
- © C-771
- © CD-773/ADB5331A
- © C-772
- © CB-34/IO

以降、MPL-29/ALPCIWXPは、MPL-29と称します。

2. 取扱説明書の構成

MPL-29 は、次に示すようにユニットまたはボードのタイプで分類された取扱説明書が用意されていますので、 ご使用になるユニットまたはボードに該当する取扱説明書をご覧ください。

ユニットまたは	ユニットまたはボード	取扱説明書
ボードのタイプ		
マスターボード	パソコン-スレーブユニット間のインタフェースボード	注.
	CB-09	
MCC05 ユニット	パルスジェネレータ MCC05 を搭載したスレーブユニット	AL MCC05 ユニット編
	C-770AL CDB-5420-AL770 CAD-5410-AL770	
	C-771 CD-773/ADB5331A	
MCC06 ユニット	パルスジェネレータ MCC06 を搭載したスレーブユニット	AL MCC06 ユニット編
	C-772	
I/O ユニット	汎用 I/O ポートを持つスレーブユニット	AL I/O ユニット編
	CB-08 CB-34/IO	(当取扱説明書)

注.AL MCC05 ユニット編、AL MCC06 ユニット編、AL I/O ユニット編いずれでも示しています。

3. ご使用になる前に

3-1. DLL の使用上の注意

MPL-29 は、次に示すようにユニットまたはボードのタイプで分類された 4 つの DLL で構成されています。 ユーザアプリケーションは、使用するユニットまたはボードに該当する DLL の関数を呼び出して、モータコントロール及び、汎用 I/O PORT へのアクセスを行います。よってユーザアプリケーションは、最低でも 2 つの DLL が必要になります。

例.C-772 使用の場合

AlPciA.dll、Ac06A.dll が必要になります。

これによりヘッダーファイル(モジュール定義ファイル)、ライブラリーファイルも複数必要になります。

ユニットまたは	ユニットまたはボード	DLL
ボードのタイプ		
マスターボード	パソコン-スレーブユニット間のインタフェースボード	AlPciA.dll
	CB-09	
MCC05 ユニット	パルスジェネレータ MCC05 を搭載したスレーブユニット	Ac05A.dll
	C-770AL CDB-5420-AL770 CAD-5410-AL770	
	C-771 CD-773/ADB5331A	
MCC06 ユニット	パルスジェネレータ MCC06 を搭載したスレーブユニット	Ac06A.dll
	C-772	
I/O ユニット	汎用 I/O ポートを持つスレーブユニット	AcIoA.dll
	CB-08 CB-34/IO	

3-2. この取扱説明書の見方

(1) 各種 DLL の関数と構造体

この取扱説明書の、各種 DLL の構造体、または関数は、次の形式で解説します。

○○○ 構造体 ← 構造体の名称

構造体が使用される関数が存在する DLL の名称 → ○○○○ DLL

〇〇〇○ ← 構造体が使用される関数が対応するマスターボードまたはスレーブユニットの名称

説明

→ 構造体の説明

書式

<u>C 言語</u> ·······株造体を使用するときの定義

<u>VB</u> ·························· → Visual Basic で、構造体を使用するときの定義

<u>Delphi</u> ······· → Delphi で、構造体を使用するときの定義

メンバ

・・・・・・・・・・・・・・・・ → 構造体のメンバに格納される値の説明

○○○○関数 ← 関数の名称

関数が存在する DLL の名称 → OOOO DLL

OOOO ← 関数が対応するマスターボードまたはスレーブユニットの名称

機能

→ 関数の機能の説明

書式

∁言語 ・・・・・・・・・・・・・・・・・・・・ → C言語で、関数を使用するときの定義

<u>VB</u> ······························· → Visual Basic で、関数を使用するときの定義

<u>VB.NET</u> ・・・・・・・・・・・・・・・・・・・・ → Visual Basic.NET で、関数を使用するときの定義

<u>Delphi</u> ······ → Delphi で、関数を使用するときの定義

引数

・・・・・・・・・・・・・・・・・・・・・ → 関数の各引数に指定する値の説明

戻り値

______ ・・・・・・・・・・・・・・・・・・・・・ → 関数の戻り値の説明

3-3. AL 通信上の通信エラー

AL 通信上の通信エラーが発生した場合、環境設定ツール関数または環境設定直接関数を実行しない限り、エラーはクリアされません。AL 通信上の通信エラーが発生した場合、再度、環境設定ツール関数または環境設定直接関数を実行してください。

※ AL 通信エラーについては、CB-09 の取扱説明書をご覧ください。

4. AL マスターボード対応 DLL

4-1. 環境設定

ALマスターボード対応 DLLでは、リトライ回数、AL通信ボーレートを内部に記憶しています。これらの情報のことを環境設定情報と称します。MPL-29の各種ライブラリ関数を実行することによる ALシリーズ通信は、環境設定情報をもとに行われるため、ユーザアプリケーションは、次のいずれかの方法により、環境設定情報を設定しなければなりません。

この章では、ALマスターボード対応 DLL を、単にマスターボード DLL と称します。

(1) 環境設定ツールによる設定

環境設定ツールは、画面上から手動操作により環境設定情報を設定するためのツールです。環境設定ツールを使用した場合、環境設定情報に変更があっても、ユーザアプリケーションの修正と再コンパイルが不要になります。環境設定ツールで設定した環境設定情報は、環境設定ツール関数でマスターボード DLL 内部に取り込まれます。この情報をもとに、マスターボードの初期化が実行されるため、環境設定ツール関数は、ユーザアプリケーションの先頭で実行してください。

(2) ユーザアプリケーションによる直接設定

ユーザアプリケーションから<mark>環境設定直接関数</mark>を実行して、環境設定情報を指定します。<mark>環境設定直接関数</mark>が実行されると、指定された環境設定情報は、マスターボード DLL 内部に取り込まれます。この情報をもとに、マスターボードの初期化が実行されるため、<u>環境設定直接関数</u>は、ユーザアプリケーションの先頭で実行してください。

4-2. 構造体と関数

● 構造体一覧

構造体名	説明
RESULT 構造体	関数を実行した結果を格納
環境設定ツール情報構造体	環境設定情報を格納
<u>スレーブ情報構造体</u>	全スレーブのスレーブタイプを格納

● 関数一覧

関数名	機能
環境設定ツール関数	環境設定ツールで設定した情報で環境設定
<u>環境設定直接関数</u>	設定値を直接指定して環境設定
環境設定ツール情報読み出し関数	環境設定ツールで設定された情報の読み出し
関数環境設定問い合わせ関数	すでに環境設定が行われているかの問い合わせ
AL 通信エラー累計回数読み出し関数	AL 通信上で発生したエラーの累計回数の読み出し
AL 通信エラー累計回数クリア関数	AL 通信上で発生したエラーの累計回数のクリア
スレーブ情報読み出し関数	全スレーブのスレーブタイプの読み出し
<u>汎用 I/O PORT 読み出し関数</u>	マスターボードの汎用 I/O PORT の状態を読み出し
<u>汎用 I/O PORT 書き込み関数</u>	マスターボードの汎用 I/O PORT に書き込み

RESULT 構造体 AL マスターボード対応 DLL

CB-09

説明

マスターボード DLL の関数を実行した結果が格納されます。

書式

} ALK_S_RESULT;

VB Type ALK_S_RESULT

ALK Result (1 To 4) As Integer

End Type

VB.NET Structure ALK_S_RESULT

⟨MarshalAs (UnmanagedType.ByValArray, SizeConst:=4)⟩ Public ALK_Result() As Short

Public Sub Initialize ()

ReDim ALK_Result (4)

End Sub

End Structure

Delphi ALK S RESULT = record

ALK_Result: array[1..4] of WORD;

end;

メンバ

次に示すメンバは、C 言語で表記しています。C 言語の $ALK_Result [0] \sim ALK_Result [3]$ は、Visual Basic では $ALK_Result (1) \sim ALK_Result (4)$ 、Visual Basic.NET では $ALK_Result (0) \sim ALK_Result (3)$ 、Delphi では $ALK_Result [1] \sim ALK_Result [4]$ に対応します。

ALK_Result[0] ・・・実行された関数を示します。このメンバに格納される値は、次のいずれかです。

値	実行された関数	値	実行された関数
1	環境設定ツール関数	150	汎用 I/O PORT 読み出し関数
2	環境設定直接関数	151	<u>汎用 I/O PORT 書き込み関数</u>
100	環境設定ツール情報読み出し関数		
101	スレーブ情報読み出し関数		
102	AL 通信エラー累計回数読み出し関数		
103	AL通信エラー累計回数クリア関数	<u> </u>	

値は10進表記です。

 $ALK_Result[1]$ · · · 実行結果を示します。このメンバに格納される値は、次のいずれかです。

値	実行結果
0	関数の実行が正常に終了しました
1	DLL 内部で API エラーが発生しました
2	NULL ポインタが指定されています
3	カーネルドライバがロードされていません。またはカーネルドライバでエラーが発生しました
4	指定したパラメータが設定範囲を超えています
5	マスターボードに RESET が入力されました
8	環境設定されていません
19	マスターボードが検出できません
20	マスターボードから不正なデータを受信しました
21	マスターボードが4枚以上検出されました
22	指定されたボード番号に該当するボードがありません
28	ボード番号が重複しています
31	DLLが複数のプロセスから同時に使用されました

値は 10 進表記です。

 ALK_Result [2] ・・・・ マスターボード、スレーブユニット上で発生したエラーを示します。 このメンバに格納される値は、次のいずれかです。

値		実行結果
0	(H'00)	エラーは発生しませんでした
$1 \sim 127$	$(H'01 \sim H'7F)$	スレーブユニット固有のエラーです。各スレーブの取扱説明書をご覧ください
128	(H'80h)	初期化エラー(スレーブユニットが不正に電源 OFF または RESET されました)
129	(H'81h)	シリアルエラー (スレーブユニットからの受信時にエラーが発生しました)
130	(H'82h)	タイムアウトエラー (スレーブユニットへの送信時にエラーが発生しました)

値は 10 進表記です。()内は、16 進表記です。

ALK_Result [3] ··· 将来の拡張用です。

環境設定ツール情報構造体

AL マスターボード対応 DLL

CB-09

説明

環境設定情報が格納されます。

書式

```
C言語 typedef struct ALK_TAG_S_ENVIRONMENT_INFO {
```

WORD ALK Ch1;

WORD ALK_Ch2;

WORD ALK Ch3;

WORD ALK Retry;

WORD ALK RsBaudRate;

WORD ALK AlBaudRate;

} ALK_S_ENVIRONMENT_INFO;

<u>VB</u> Type ALK_S_ENVIRONMENT_INFO

ALK Ch1 As Integer

ALK Ch2 As Integer

ALK_Ch3 As Integer

ALK_Retry As Integer

ALK RsBaudRate As Integer

ALK AlBaudRate As Integer

End Type

VB.NET Structure ALK_S_ENVIRONMENT_INFO

Dim ALK_Ch1 As Short

Dim ALK_Ch2 As Short

Dim ALK_Ch3 As Short

Dim ALK_Retry As Short

Dim ALK_RsBaudRate As Short

Dim ALK_AlBaudRate As Short

End Structure

Delphi ALK_S_ENVIRONMENT_INFO = record

 ALK_Ch1 : WORD;

ALK_Ch2: WORD;

ALK Ch3: WORD;

ALK_Retry: WORD;

ALK_RsBaudRate: WORD;

 $ALK_AlBaudRate$: WORD;

end;

メンバ

 ALK_Ch1 · · · · 1番目に認識されているマスターボードのボード番号が格納されます。

 $0 \sim 9$ のいずれかになります。

 ALK_Ch2 ··· 2番目に認識されているマスターボードのボード番号が格納されます。

 $0 \sim 9$ のいずれかになります。認識されているボードがない場合、HFF が格納されます。

ALK Ch3 ··· 3番目に認識されているマスターボードのボード番号が格納されます。

0~9のいずれかになります。認識されているボードがない場合、H'FF が格納されます。

Retry ··· 環境設定ツールで設定したリトライ回数が格納されます。 $0 \sim 3$ のいずれかになります。

RsBaudRate · · · 0 が格納されます。

AlBaudRate · · · 環境設定ツールで設定した AL 通信ボーレートが格納されます。

このメンバに格納される値は、次のいずれかです。

値 (識別子)	値 (数値)	AL 通信ボーレート
ALK_RATE_9765	0	9765bps
ALK_RATE_39062	1	39062bps
ALK_RATE_156250	2	156250bps
ALK_RATE_625000	3	625000bps

値(数値)は、10進表記です。

スレーブ情報構造体

AL マスターボード対応 DLL

CB-09

説明

全スレーブのスレーブタイプを格納します。

書式

C 言語 typedef struct ALK_TAG_S_SLAVE_INFO { WORD ALK_SlaveType [31];

} ALK_S_SLAVE_INFO;

VΒ Type ALK S SLAVE INFO

ALK_SlaveType (1 To 31) As Integer

End Type

VB.NET Structure ALK_S_SLAVE_INFO

⟨MarshalAs (UnmanagedType.ByValArray, SizeConst:=31)⟩ Public ALK_SlaveType () As Short

Public Sub Initialize ()

ReDim ALK_SlaveType (31)

End Sub

End Structure

Delphi ALK S SLAVE INFO = record

ALK_SlaveType : array[1..31] of WORD;

end:

メンバ

次に示すメンバは、C 言語で表記しています。C 言語の ALK SlaveType [0]~ ALK SlaveType [30]は、Visual Basic で は ALK_SlaveType (1)~ ALK_SlaveType (31)、 Visual Basic.NET では ALK_SlaveType (0)~ ALK_SlaveType (30)、 Delphi で は ALK SlaveType [1]~ ALK SlaveType [31]に対応します。

・・・ スレーブアドレス H'01 に接続されているスレーブのスレーブタイプが格納されます。 ALK SlaveType [0]

ALK SlaveType [30]

・・・ スレーブアドレス H'IF に接続されているスレーブのスレーブタイプが格納されます。 スレーブが接続されていない場合、これらのメンバには H'FF が格納されます。 スレーブが接続されている場合、これらのメンバに格納される値は、次のいずれかです。

値(数値)	スレーブタイプ
H'00	C-770AL
H'10	CB-08
H'20	CDB-5420-AL770
H'21	CAD-5410-AL770
H'01	C-771
H'02	C-772
H'22	CD-773/ADB5331A
H'11	CB-34
	H'00 H'10 H'20 H'21 H'01 H'02 H'22

環境設定ツール関数

AL マスターボード対応 DLL

CB-09

機能

環境設定ツールで設定した情報で環境設定を行います。

書式

C言語 BOOL ALK_EnvironmentInfo_Tool(ALK_S_RESULT FAR *psResult);

<u>VB</u> Function ALK EnvironmentInfo Tool (psResult As ALK S RESULT) As Boolean

VB.NET Function ALK EnvironmentInfo Tool (ByRef psResult As ALK S RESULT) As Boolean

Delphi function ALK_EnvironmentInfo_Tool (var psResult: ALK_S_RESULT): Boolean;

引数

psResult

··· この関数を実行した結果が格納される<u>RESULT 構造体</u>のポインタを指定します。 NULL ポインタまたは 0 が指定されると、実行結果が格納されません。

戻り値

この関数を実行した結果、正常終了したときは TRUE(1)、エラーが発生したときは FALSE(0)を返します。

環境設定直接関数

AL マスターボード対応 DLL

CB-09

機能

リトライ回数、AL通信ボーレートを直接指定して環境設定を行います。

書式

C言語 BOOL ALK_Environment_Direct (WORD Retry, WORD RsBaudRate, WORD AlBaudRate, ALK_S_RESULT FAR *psResult);

<u>VB</u> Function ALK_Environment_Direct (ByVal *Retry* As Integer, ByVal *RsBaudRate* As Integer, ByVal *AlBaudRate* As Integer, *psResult* As ALK S RESULT) As Boolean

<u>VB.NET</u> Function ALK_Environment_Direct (ByVal *Retry* As Short, ByVal *RsBaudRate* As Short, ByVal *AlBaudRate* As Short, ByRef *psResult* As ALK S RESULT) As Boolean

<u>Delphi</u> function ALK_Environment_Direct(*Retry*: WORD; *RsBaudRate*: WORD; *AlBaudRate*: WORD; var *psResult*: ALK_S_RESULT): Boolean;

引数

Retry · · · リトライ回数を指定します。 $0 \sim 3$ のいずれかになります。

RsBaudRate · · · 0を指定します。

AlBaudRate ··· AL 通信ボーレートを指定します。

引数 AlBaudRate の値	AL 通信ボーレート
ALK_RATE_9765	9765bps
ALK_RATE_39062	39062bps
ALK_RATE_156250	156250bps
ALK_RATE_625000	625000bps

psResult ・・・ この関数を実行した結果が格納される <u>RESULT 構造体</u>のポインタを指定します。 NULL ポインタまたは 0 が指定されると、実行結果が格納されません。

戻り値

環境設定ツール情報読み出し関数

AL マスターボード対応 DLL

CB-09

機能

環境設定ツールで設定された情報を読み出します。

書式

- C言語 BOOL ALK_EnvironmentInfo_Read (ALK_S_ENVIRONMENT_INFO FAR *psEnvInfo, ALK_S_RESULT FAR *psResult);
- <u>VB</u> Function ALK_EnvironmentInfo_Read (*psEnvInfo* As ALK_S_ENVIRONMENT_INFO, *psResult* As ALK_S_RESULT) As Boolean
- <u>VB.NET</u> Function ALK_EnvironmentInfo_Read (ByRef *psEnvInfo* As ALK_S_ENVIRONMENT_INFO, ByRef *psResult* As ALK_S_RESULT) As Boolean
- <u>Delphi</u> function ALK_EnvironmentInfo_Read (var *psEnvInfo*: ALK_S_ENVIRONMENT_INFO; var *psResult*: ALK_S_RESULT): Boolean;

引数

psEnvInfo ・・・・ 環境設定ツールで設定された情報が格納される<u>環境設定ツール情報構造体</u>のポインタを指定します。

psResult ・・・ この関数を実行した結果が格納される RESULT 構造体のポインタを指定します。 NULL ポインタまたは 0 が指定されると、実行結果が格納されません。

戻り値

この関数を実行した結果、正常終了したときは TRUE(1)、エラーが発生したときは FALSE(0)を返します。

関数環境設定問い合わせ関数

AL マスターボード対応 DLL

CB-09

機能

すでに環境設定が行われているかを問い合わせます。

書式

C言語 BOOL ALK_Environment_Inquiry (VOID);

VB Function ALK Environment Inquiry () As Boolean

VB.NET Function ALK_Environment_Inquiry () As Boolean

Delphi function ALK_Environment_Inquiry: Boolean;

引数

この関数に、引数はありません。

戻り値

すでに環境設定が行われている場合は TRUE(1)、環境設定が行われていない場合は FALSE(0)を返します。

AL 通信エラー累計回数読み出し関数

AL マスターボード対応 DLL

CB-09

機能

AL 通信上で発生したエラーの累計回数を読み出します。

書式

C言語 BOOL ALK_Err_Count (WORD IfNo, WORD FAR *pCount, ALK_S_RESULT FAR *psResult);

<u>VB</u> Function ALK Err Count (ByVal *IfNo* As Integer, *pCount* As Integer, *psResult* As ALK S RESULT) As Boolean

<u>VB.NET</u> Function ALK_Err_Count (ByVal *IfNo* As Short, ByRef *pCount* As Short, ByRef *psResult* As ALK_S_RESULT) As Boolean

<u>Delphi</u> function ALK Err Count (*IfNo*: WORD, var *pCount*: WORD, var *psResult*: ALK S RESULT): Boolean;

引数

IfNo

· · · I/F 番号を指定します。

マスターのボード/ユニット 引数 *IfNo* の値 CB-09 ボード番号 (0 ~ 9)

pCount

・・・ エラーの累計回数が格納される変数のポインタを指定します。

psResult

··· この関数を実行した結果が格納される<u>RESULT 構造体</u>のポインタを指定します。 NULL ポインタまたは 0 が指定されると、実行結果が格納されません。

戻り値

この関数を実行した結果、正常終了したときは TRUE(1)、エラーが発生したときは FALSE(0)を返します。

AL 通信エラー累計回数クリア関数

AL マスターボード対応 DLL

CB-09

機能

AL 通信エラー累計回数を 0 にします。

書式

C言語 BOOL ALK_Err_Clear (WORD IfNo, ALK_S_RESULT FAR *psResult);

VB Function ALK_Err_Clear (ByVal IfNo As Integer, psResult As ALK_S_RESULT) As Boolean

VB.NET Function ALK Err Clear (ByVal IfNo As Short, ByRef psResult As ALK S RESULT) As Boolean

<u>Delphi</u> function ALK_Err_Clear (*IfNo*: WORD, var *psResult*: ALK_S_RESULT) : Boolean;

引数

IfNo

· · · I/F 番号を指定します。

マスターのボード/ユニット 引数 IfNo の値 CB-09 ボード番号 $(0 \sim 9)$

psResult

··· この関数を実行した結果が格納される<u>RESULT 構造体</u>のポインタを指定します。 NULL ポインタまたは 0 が指定されると、実行結果が格納されません。

戻り値

スレーブ情報読み出し関数

AL マスターボード対応 DLL

CB-09

機能

スレーブアドレス H'01 ~ H'1F に接続されているスレーブのスレーブタイプを読み出します。

書式

- C 言語 BOOL ALK_SlaveInfo_Read (WORD IfNo, ALK_S_SLAVE_INFO FAR *psSlvInfo, ALK_S_RESULT FAR *psResult);
- <u>VB</u> Function ALK_SlaveInfo_Read (ByVal *IfNo* As Integer, *psSlvInfo* As ALK_S_SLAVE_INFO, *psResult* As ALK_S_RESULT) As Boolean
- <u>VB.NET</u> Function ALK_SlaveInfo_Read (ByVal *IfNo* As Short, ByRef *psSlvInfo* As ALK_S_SLAVE_INFO, ByRef *psResult* As ALK_S_RESULT) As Boolean
- <u>Delphi</u> function ALK_SlaveInfo_Read (*IfNo*: WORD; var *psSlvInfo*: ALK_S_SLAVE_INFO; var *psResult*: ALK_S_RESULT) : Boolean;

引数

IfNo

· · · I/F 番号を指定します。

マスターのボード/ユニット	引数 IfNo の値
CB-09	ボード番号 (0~9)

psSlvInfo

· ・・· スレーブ情報が格納されるスレーブ情報構造体のポインタを指定します。

psResult

··· この関数を実行した結果が格納される RESULT 構造体のポインタを指定します。

NULL ポインタまたは 0 が指定されると、実行結果が格納されません。

戻り値

汎用 I/O PORT 読み出し関数

AL マスターボード対応 DLL

CB-09

機能

I/F 番号を指定して、マスターボードの汎用 I/O PORT の状態を読み出します。

書式

C言語 BOOL ALK_Inp (WORD IfNo, WORD FAR *pData, ALK_S_RESULT FAR *psResult);

<u>VB</u> Function ALK_Inp (ByVal *IfNo* As Integer, *pData* As Integer, *psResult* As ALK_S_RESULT) As Boolean

VB.NET Function ALK_Inp (ByVal IfNo As Short, ByRef pData As Short, ByRef psResult As ALK_S_RESULT) As Boolean

Delphi function ALK_Inp (IfNo: WORD; var pData: WORD; var psResult: ACIO_S_RESULT): Boolean;

引数

IfNo

· · · I/F 番号を指定します。

マスターのボード/ユニット 引数 IfNo の値

CB-09 ボード番号 (0 ~ 9)

pData

· · · · 読み出した内容が格納される変数のポインタを指定します。 変数の内容は、次のようになります。

2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
0	0	0	0	0	0	0	0	0	0	ĪN1	ĪN0	0	0	OUT1	OUT0

HIGH レベルのときに 0、LOW レベルのときに 1 が読み出されます。

psResult

··· この関数を実行した結果が格納される<u>RESULT 構造体</u>のポインタを指定します。 NULL ポインタまたは 0 が指定されると、実行結果が格納されません。

戻り値

汎用 I/O PORT 書き込み関数

AL マスターボード対応 DLL

CB-09

機能

I/F 番号を指定して、マスターボードの汎用 I/O PORT にデータを書き込みます。

書式

<u>C言語</u> BOOL ALK_Outp (WORD *IfNo*, WORD FAR *pData, ALK_S_RESULT FAR *psResult);

VB Function ALK_Outp (ByVal IfNo As Integer, pData As Integer, psResult As ALK_S_RESULT) As Boolean

<u>VB.NET</u> Function ALK_Outp (ByVal *IfNo* As Short, ByRef *pData* As Short, ByRef *psResult* As ALK_S_RESULT) As Boolean

Delphi function ALK_Outp (IfNo: WORD; var pData: WORD; var psResult: ACIO_S_RESULT): Boolean;

引数

IfNo

· · · I/F 番号を指定します。

マスターのボード/ユニット 引数 IfNo の値

CB-09 ボード番号 (0 ~ 9)

pData

··· 書き込むデータが格納されている変数のポインタを指定します。 変数の内容は、次のようになります。

2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
0	0	0	0	0	0	0	0	0	0	0	0	0	0	OUT1	OUT0

HIGH レベルにするときに 0、LOW レベルにするときに 1 を書き込みます。

psResult

··· この関数を実行した結果が格納される<u>RESULT 構造体</u>のポインタを指定します。 NULL ポインタまたは 0 が指定されると、実行結果が格納されません。

戻り値

5. AL I/O ユニット対応 DLL

AL I/O ユニット対応 DLL は、I/O コントロール専用のスレーブユニット上の、汎用 I/O PORT を制御するための各種関数を備えています。

この章では、AL I/O ユニット対応 DLL を、単に I/O DLL と称します。

5-1. 汎用 I/O PORT の制御

スレーブユニット上の汎用 I/O PORT を制御するために説明をします。

(1) 汎用 I/O PORT の説明

I/O DLL は、汎用 I/O PORT を直接制御します。

スレーブユニット	汎用 I/O PORT
CB-08	あり
CB-34/IO	あり (一部の信号でラッチ機能、ラッチエッジの選択が可能)

(2) 汎用 I/O PORT のオープンとクローズ

汎用 I/O PORT を制御する前に、汎用 I/O PORT をオープンし、汎用 I/O PORT ハンドルを取得します。以降、汎用 I/O PORT を制御する関数を実行する際に、この汎用 I/O PORT ハンドルを指定します。

汎用 I/O PORT ハンドルは、汎用 I/O PORT をクローズするまで有効です。ユーザアプリケーション終了時は、必ず 汎用 I/O PORT をクローズしてください。クローズが行われていないと、以降正常に動作しません。

5-2. 構造体と関数

● 構造体一覧

構造体名	説明
RESULT 構造体	関数を実行した結果を格納

● 関数一覧

関数名	機能
<u>汎用 I/O PORT オープン関数</u>	汎用 I/O PORT のオープン
汎用 I/O PORT クローズ関数	汎用 I/O PORT のクローズ
汎用 I/O PORT 一括読み出し関数	汎用 I/O PORT の状態を一括読み出し
汎用 I/O PORT 指定信号読み出し関数	汎用 I/O PORT の指定信号の状態を読み出し
<u>汎用 I/O PORT 一括書き込み関数</u>	汎用 I/O PORT に一括書き込み
汎用 I/O PORT AND 書き込み関数	汎用 I/O PORT に指定データとの論理積の書き込み
汎用 I/O PORT OR 書き込み関数	汎用 I/O PORT に指定データとの論理和を書き込み
汎用 I/O PORT 指定信号 LOW レベル書き込み関数	汎用 I/O PORT の指定信号に LOW レベルを書き込み
汎用 I/O PORT 指定信号 HIGH レベル書き込み関数	汎用 I/O PORT の指定信号に HIGH レベルを書き込み
ラッチ機能選択書き込み関数	汎用 I/O PORT のラッチ機能を設定
<u>ラッチエッジ選択書き込み関数</u>	汎用 I/O PORT のラッチエッジを設定
ラッチ機能選択読み出し関数	汎用 I/O PORT のラッチ機能の設定の読み出し
ラッチエッジ選択読み出し関数	汎用 I/O PORT のラッチエッジの設定の読み出し
<u>ラッチクリア書き込み関数</u>	汎用 I/O PORT のラッチデータをクリア

RESULT 構造体 AL I/O ユニット対応 DLL

CB-08 CB-34/IO

説明

I/O DLL の関数を実行した結果が格納されます。

書式

ReDim ACIO_Result (4)
End Sub
End Structure

<u>Delphi</u> ACIO_S_RESULT = record

ACIO_Result: array [1..4] of WORD;
end;

メンバ

次に示すメンバは、C 言語で表記しています。C 言語の $ACIO_Result [0] \sim ACIO_Result [3]$ は、Visual Basic では $ACIO_Result (1) \sim ACIO_Result (4)$ 、Visual Basic.NET では $ACIO_Result (0) \sim ACIO_Result (3)$ 、Delphi では $ACIO_Result [1] \sim ACIO_Result [4]$ に対応します。

 $ACIO\ Result\ [0]$ · · · 実行された関数を示します。このメンバに格納される値は、次のいずれかです。

値	実行された関数	値	実行された関数
60	汎用 I/O PORT オープン関数	130	ラッチ機能選択書き込み関数
61	<u>汎用 I/O PORT クローズ関数</u>	131	<u>ラッチエッジ選択書き込み関数</u>
62	汎用 I/O PORT 一括読み出し関数	132	ラッチ機能選択読み出し関数
63	汎用 I/O PORT 指定信号読み出し関数	133	<u>ラッチエッジ選択読み出し関数</u>
64	汎用 I/O PORT 一括書き込み関数	134	ラッチクリア書き込み関数
65	<u>汎用 I/O PORT AND 書き込み関数</u>		
66	<u>汎用 I/O PORT OR 書き込み関数</u>		
67	汎用 I/O PORT 指定信号 LOW 書き込み関数		
68	汎用 I/O PORT 指定信号 HIGH 書き込み関数		

値は 10 進表記です。

 $ACIO_Result[1]$ ··· 実行結果を示します。このメンバに格納される値は、次のいずれかです。

値	実行結果
0	関数の実行が正常に終了しました
1	DLL 内部で API エラーが発生しました
2	NULL ポインタが指定されています
3	カーネルドライバがロードされていません。またはカーネルドライバでエラーが発生しました
4	指定したパラメータが設定範囲を超えています
5	マスターボードに RESET が入力されました
6	ハンドルの値が範囲外です
8	環境設定されていません
9	指定されたアドレスにスレーブが接続されていません
10	指定したスレーブタイプと実際に接続されているスレーブのタイプが異なります
11	接続されているスレーブでは、関数の実行ができません
12	指定された汎用 I/O PORT は、オープンされていません
13	指定された汎用 I/O PORT は、すでにオープンされています
18	I/O PORT 数が最大値を越えています
20	マスターボードから不正なデータを受信しました
21	マスターボードが4枚以上検出されました
22	指定されたボード番号に該当するボードがありません
28	ボード番号が重複しています
29	現在のスレッドからは、操作出来ません
30	マスターボード DLL が見つかりません

値は10進表記です。

ACIO_Result [2] ・・・・ マスターボード、スレーブユニット上で発生したエラーを示します。 このメンバに格納される値は、次のいずれかです。

値		実行結果
0	(H'00)	エラーは発生しませんでした
$1 \sim 127$	$(H'01 \sim H'7F)$	スレーブユニット固有のエラーです。各スレーブの取扱説明書をご覧ください
128	(H'80h)	初期化エラー(スレーブユニットが不正に電源 OFF または RESET されました)
129	(H'81h)	シリアルエラー (スレーブユニットからの受信時にエラーが発生しました)
130	(H'82h)	タイムアウトエラー(スレーブユニットへの送信時にエラーが発生しました)

値は 10 進表記です。()内は、16 進表記です。

ACIO_Result [3] ··· 将来の拡張用です。

汎用 I/O PORT オープン関数

AL I/O ユニット対応 DLL

CB-08 CB-34/IO

機能

I/F 番号、スレーブアドレス、スレーブタイプを指定して、汎用 I/O PORT をオープンし、引数 phPort で示される変数に汎用 I/O PORT ハンドルを格納します。

書式

- C 言語 BOOL ACIO_BPortOpen (WORD IfNo, WORD SlaveAddr, WORD SlaveType, WORD Sel, DWORD FAR *phPort, ACIO_S_RESULT FAR *psResult);
- Function ACIO_BPortOpen (ByVal *IfNo* As Integer, ByVal *SlaveAddr* As Integer, ByVal *SlaveType* As Integer, ByVal *Sel* As Integer, *phPort* As Long, *psResult* As ACIO_S_RESULT) As Boolean
- VB.NET Function ACIO_BPortOpen (ByVal *IfNo* As Short, ByVal *SlaveAddr* As Short, ByVal *SlaveType* As Short, ByVal *Sel* As Short, ByRef *phPort* As Integer, ByRef *psResult* As ACIO_S_RESULT) As Boolean
- <u>Delphi</u> function ACIO_BPortOpen (*IfNo*: WORD; *SlaveAddr*: WORD; *SlaveType*: WORD; *Sel*: WORD; var *phPort*: DWORD; var *psResult*: ACIO_S_RESULT) : Boolean;

引数

IfNo ・・・ I/F 番号を指定します。

マスターのボード/ユニット	引数 IfNo の値
CB-09	ボード番号 (0 ~ 9)
CB-23/USB	ACIO_USB

SlaveAddr · · · · スレーブアドレスを指定します。 $H'01 \sim H'1F$ のいずれかになります。

SlaveType · · · スレーブタイプを指定します。この引数は、次の値のいずれかになります。

引数 SlaveType の値	スレーブタイプ	
ACIO_SLAVE_CB08	CB-08	
ACIO SLAVE CB34	CB-34/IO	

Sel ・・・・ オープンする PORT を指定します。CB-34/IO のみで有効です。

引数 Select の値	オープンする PORT
ACIO_CB34_10_20	$\overline{\text{IN}10} \sim \overline{\text{IN}17}, \ \overline{\text{IN}20} \sim \overline{\text{IN}27}, \ \overline{\text{OUT}10} \sim \overline{\text{OUT}17}, \ \overline{\text{OUT}20} \sim \overline{\text{OUT}27}$
ACIO_CB34_30_40	$\overline{\text{IN30}} \sim \overline{\text{IN37}}, \ \overline{\text{IN40}} \sim \overline{\text{IN47}}, \ \overline{\text{OUT30}} \sim \overline{\text{OUT37}}, \ \overline{\text{OUT40}} \sim \overline{\text{OUT47}}$

phPort ・・・ 汎用 I/O PORT ハンドルが格納される変数のポインタを指定します。

psResult ··· この関数を実行した結果が格納される<u>RESULT 構造体</u>のポインタを指定します。

NULL ポインタまたは 0 が指定されると、実行結果が格納されません。

戻り値

汎用 I/O PORT クローズ関数

AL I/O ユニット対応 DLL

CB-08 CB-34/IO

機能

指定された汎用 I/O PORT をクローズします。

書式

C言語 BOOL ACIO_BPortClose (DWORD hPort, ACIO_S_RESULT FAR *psResult);

VB Function ACIO BPortClose (ByVal hPort As Long, psResult As ACIO S RESULT) As Boolean

VB.NET Function ACIO_BPortClose (ByVal hPort As Integer, ByRef psResult As ACIO_S_RESULT) As Boolean

Delphi function ACIO_BPortClose (hPort: DWORD; var psResult: ACIO_S_RESULT): Boolean;

引数

hPort ・・・ 汎用 I/O PORT ハンドルを指定します。

psResult ··· この関数を実行した結果が格納される RESULT 構造体のポインタを指定します。

NULL ポインタまたは 0 が指定されると、実行結果が格納されません。

戻り値

汎用 I/O PORT 一括読み出し関数

AL I/O ユニット対応 DLL

CB-08 CB-34/IO

機能

指定された汎用 I/O PORT の状態を一括読み出しします。

書式

C言語 BOOL ACIO_BPortIn (DWORD hPort, DWORD FAR *pData, ACIO_S_RESULT FAR *psResult);

<u>VB</u> Function ACIO BPortIn (ByVal hPort As Long, pData As Long, psResult As ACIO S RESULT) As Boolean

<u>VB.NET</u> Function ACIO_BPortIn (ByVal *hPort* As Integer, ByRef *pData* As Integer, ByRef *psResult* As ACIO_S_RESULT) As Boolean

<u>Delphi</u> function ACIO BPortIn (hPort: DWORD; var pData: DWORD; var psResult: ACIO S RESULT): Boolean;

引数

hPort

· · · · 汎用 I/O PORT ハンドルを指定します。

pData

··· 読み出した内容が格納される変数のポインタを指定します。 変数の内容は、次のようになります。

● CB-08 の汎用 I/O PORT を読み出す場合

2 ³¹	2 ³⁰	2 ²⁹	2 ²⁸	2 ²⁷	2 ²⁶	2 ²⁵	2 ²⁴	2 ²³	2 ²²	2 ²¹	2 ²⁰	2 ¹⁹	2 ¹⁸	2 ¹⁷	2 ¹⁶
ĪN27	ĪN26	ĪN25	ĪN24	ĪN23	ĪN22	ĪN21	ĪN20	ĪN17	ĪN16	ĪN15	ĪN14	ĪN13	ĪN12	ĪN11	ĪN10
15	1 44														
2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰

HIGH レベルのときに 0、LOW レベルのときに 1 が読み出されます。

● CB-34/IO の汎用 I/O PORT を読み出す場合

・ N10 ~ N17、N20 ~ N27、OUT10 ~ OUT17、OUT20 ~ OUT27 をオープンしている場合

2 ³¹	2 ³⁰	2 ²⁹	2 ²⁸	2 ²⁷	2 ²⁶	2 ²⁵	2 ²⁴	2 ²³	2 ²²	2 ²¹	2 ²⁰	2 ¹⁹	2 ¹⁸	2 ¹⁷	2 ¹⁶
ĪN27	ĪN26	ĪN25	ĪN24	ĪN23	IN22	ĪN21	ĪN20	ĪN17	ĪN16	ĪN15	ĪN14	ĪN13	ĪN12	ĪN11	ĪN10
2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
OUT27	OUT26	OUT25	OUT24	OUT23	OUT22	OUT21	OUT20	OUT17	OUT16	OUT15	OUT14	OUT13	OUT12	OUT11	OUT10

HIGH レベルのときに 0、LOW レベルのときに 1 が読み出されます。

・IN30 ~ IN37、IN40 ~ IN47、OUT30 ~ OUT37、OUT40 ~ OUT47 をオープンしている場合

2 ³¹	2 ³⁰	2 ²⁹	2 ²⁸	2 ²⁷	2 ²⁶	2 ²⁵	2 ²⁴	2 ²³	2 ²²	2 ²¹	2 ²⁰	2 ¹⁹	2 ¹⁸	2 ¹⁷	2 ¹⁶
ĪN47	ĪN46	ĪN45	ĪN44	ĪN43	ĪN42	ĪN41	ĪN40	ĪN37	ĪN36	ĪN35	ĪN34	ĪN33	ĪN32	ĪN31	ĪN30
2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
OUT47	OUT46	OUT45	OUT44	OUT43	OUT42	OUT41	OUT40	OUT37	OUT36	OUT35	OUT34	OUT33	OUT32	OUT31	OUT30

HIGH レベルのときに 0、LOW レベルのときに 1 が読み出されます。

psResult

··· この関数を実行した結果が格納される<u>RESULT 構造体</u>のポインタを指定します。 NULL ポインタまたは 0 が指定されると、実行結果が格納されません。

戻り値

汎用 I/O PORT 指定信号読み出し関数

AL I/O ユニット対応 DLL

CB-08 CB-34/IO

機能

指定された汎用 I/O PORT の指定信号の状態を読み出します。

書式

C言語 BOOL ACIO_BSigIn (DWORD hPort, WORD SigNo, WORD FAR *pStatus, ACIO_S_RESULT FAR *psResult);

Function ACIO_BSigIn (ByVal hPort As Long, ByVal SigNo As Integer, pStatus As Integer, psResult As ACIO_S_RESULT) As Boolean

VB.NET Function ACIO_BSigIn (ByVal hPort As Integer, ByVal SigNo As Short, ByRef pStatus As Short, ByRef psResult As ACIO_S_RESULT) As Boolean

<u>Delphi</u> function ACIO_BSigIn (hPort: DWORD; SigNo: WORD; var pStatus: WORD; var psResult: ACIO_S_RESULT): Boolean;

引数

hPort ・・・ 汎用 I/O PORT ハンドルを指定します。

SigNo · · · 信号を指定します。

● CB-08 の汎用 I/O PORT を読み出す場合

引数 SigNo の値	指定信号	引数 SigNo の値	指定信号
ACIO_CB08_IN10	IN10	ACIO_CB08_IN20	IN20
ACIO_CB08_IN11	ĪN11	ACIO_CB08_IN21	IN21
ACIO_CB08_IN12	IN12	ACIO_CB08_IN22	IN22
ACIO_CB08_IN13	ĪN13	ACIO_CB08_IN23	IN23
ACIO_CB08_IN14	IN14	ACIO_CB08_IN24	IN24
ACIO_CB08_IN15	ĪN15	ACIO_CB08_IN25	IN25
ACIO_CB08_IN16	ĪN16	ACIO_CB08_IN26	IN26
ACIO_CB08_IN17	IN17	ACIO_CB08_IN27	IN27

● CB-34/IO の汎用 I/O PORT を読み出す場合

 \cdot $\overline{\text{IN}10} \sim \overline{\text{IN}17}$ 、 $\overline{\text{IN}20} \sim \overline{\text{IN}27}$ 、 $\overline{\text{OUT}10} \sim \overline{\text{OUT}17}$ 、 $\overline{\text{OUT}20} \sim \overline{\text{OUT}27}$ をオープンしている場合

引数 SigNo の値	指定信号	引数 SigNo の値	指定信号
ACIO_CB34_IN10	IN10	ACIO_CB34_IN20	IN20
ACIO_CB34_IN11	IN11	ACIO_CB34_IN21	IN21
ACIO_CB34_IN12	IN12	ACIO_CB34_IN22	IN22
ACIO_CB34_IN13	IN13	ACIO_CB34_IN23	IN23
ACIO_CB34_IN14	IN14	ACIO_CB34_IN24	IN24
ACIO_CB34_IN15	ĪN15	ACIO_CB34_IN25	IN25
ACIO_CB34_IN16	ĪN16	ACIO_CB34_IN26	IN26
ACIO_CB34_IN17	ĪN17	ACIO_CB34_IN27	IN27

 \cdot $\overline{\text{IN30}} \sim \overline{\text{IN37}}$ 、 $\overline{\text{IN40}} \sim \overline{\text{IN47}}$ 、 $\overline{\text{OUT30}} \sim \overline{\text{OUT37}}$ 、 $\overline{\text{OUT40}} \sim \overline{\text{OUT47}}$ をオープンしている場合

引数 SigNo の値	指定信号	引数 SigNo の値	指定信号
ACIO_CB34_IN30	ĪN30	ACIO_CB34_IN40	IN40
ACIO_CB34_IN31	IN31	ACIO_CB34_IN41	IN41
ACIO_CB34_IN32	IN32	ACIO_CB34_IN42	IN42
ACIO_CB34_IN33	IN33	ACIO_CB34_IN43	IN43
ACIO_CB34_IN34	IN34	ACIO_CB34_IN44	IN44
ACIO_CB34_IN35	IN35	ACIO_CB34_IN45	IN45
ACIO_CB34_IN36	IN36	ACIO_CB34_IN46	IN46
ACIO_CB34_IN37	IN37	ACIO_CB34_IN47	IN47

pStatus ··· 指定信号の状態が格納される変数のポインタを指定します。

格納される値	指定信号のレベル	
ACIO_LOW	LOW レベル	
ACIO_HIGH	HIGH レベル	

psResult · · · · この関数を実行した結果が格納される <u>RESULT 構造体</u>のポインタを指定します。 NULL ポインタまたは 0 が指定されると、実行結果が格納されません。

戻り値

汎用 I/O PORT 一括書き込み関数

AL I/O ユニット対応 DLL

CB-08 CB-34/IO

機能

指定された汎用 I/O PORT にデータを一括書き込みします。

書式

C言語 BOOL ACIO_BPortOut (DWORD hPort, DWORD FAR *pData, ACIO_S_RESULT FAR *psResult);

<u>VB</u> Function ACIO BPortOut (ByVal hPort As Long, pData As Long, psResult As ACIO S RESULT) As Boolean

<u>VB.NET</u> Function ACIO_BPortOut (ByVal hPort As Integer, ByRef pData As Integer, ByRef psResult As ACIO_S_RESULT) As Boolean

<u>Delphi</u> function ACIO_BPortOut (hPort: DWORD; var pData: DWORD; var psResult: ACIO_S_RESULT): Boolean;

引数

hPort

· · · 汎用 I/O PORT ハンドルを指定します。

pData

··· 書き込むデータが格納されている変数のポインタを指定します。 変数の内容は、次のようになります。

● CB-08 の汎用 I/O PORT に書き込む場合

2 ³¹	2 ³⁰	2 ²⁹	2 ²⁸	2 ²⁷	2 ²⁶	2 ²⁵	2 ²⁴	2 ²³	2 ²²	2 ²¹	2 ²⁰	2 ¹⁹	2 ¹⁸	2 ¹⁷	2 ¹⁶
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
OUT27	OUT26	OUT25	OUT24	OUT23	OUT22	OUT21	OUT20	OUT17	OUT16	OUT15	OUT14	OUT13	OUT12	OUT11	OUT10

HIGH レベルにするときに 0、LOW レベルにするときに 1 を書き込みます。

● CB-34/IO の汎用 I/O PORT に書き込む場合

· IN10 ~ IN17、IN20 ~ IN27、OUT10 ~ OUT17、OUT20 ~ OUT27 をオープンしている場合

2 ³¹	2 ³⁰	2 ²⁹	2 ²⁸	2 ²⁷	2 ²⁶	2 ²⁵	2 ²⁴	2 ²³	2 ²²	2 ²¹	2 ²⁰	2 ¹⁹	2 ¹⁸	2 ¹⁷	2 ¹⁶
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
OUT27	OUT26	OUT25	OUT24	OUT23	OUT22	OUT21	OUT20	OUT17	OUT16	OUT15	OUT14	OUT13	OUT12	OUT11	OUT10

HIGH レベルにするときに 0、LOW レベルにするときに 1 を書き込みます。

・ N30 ~ N37、N40 ~ N47、OUT30 ~ OUT37、OUT40 ~ OUT47 をオープンしている場合

2 ³¹	2 ³⁰	2 ²⁹	2 ²⁸	2 ²⁷	2 ²⁶	2 ²⁵	2 ²⁴	2 ²³	2 ²²	2 ²¹	2 ²⁰	2 ¹⁹	2 ¹⁸	2 ¹⁷	2 ¹⁶
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
OUT47	OUT46	OUT45	OUT44	OUT43	OUT42	OUT41	OUT40	OUT37	OUT36	OUT35	OUT34	OUT33	OUT32	OUT31	OUT30

HIGH レベルにするときに 0、LOW レベルにするときに 1 を書き込みます。

psResult

··· この関数を実行した結果が格納される<u>RESULT 構造体</u>のポインタを指定します。 NULL ポインタまたは 0 が指定されると、実行結果が格納されません。

戻り値

汎用 I/O PORT AND 書き込み関数

AL I/O ユニット対応 DLL

CB-08 CB-34/IO

機能

指定された汎用 I/O PORT の内容と、指定された変数の内容の論理積を、指定された汎用 I/O PORT に書き込みます。

書式

C言語 BOOL ACIO_BPortAndOut (DWORD hPort, DWORD FAR *pData, ACIO_S_RESULT FAR *psResult);

<u>VB</u> Function ACIO BPortAndOut (ByVal hPort As Long, pData As Long, psResult As ACIO S RESULT) As Boolean

VB.NET Function ACIO_BPortAndOut(ByVal hPort As Integer, ByRef pData As Integer, ByRef psResult As ACIO S RESULT) As Boolean

<u>Delphi</u> function ACIO BPortAndOut (hPort: DWORD; var pData: DWORD; var psResult: ACIO S RESULT): Boolean;

引数

hPort

· · · 汎用 I/O PORT ハンドルを指定します。

pData

· ・・・ 書き込むデータが格納されている変数のポインタを指定します。 変数の内容は、次のようになります。

● CB-08 の汎用 I/O PORT に書き込む場合

2 ³¹	2 ³⁰	2 ²⁹	2 ²⁸	2 ²⁷	2 ²⁶	2 ²⁵	2 ²⁴	2 ²³	2 ²²	2 ²¹	2 ²⁰	2 ¹⁹	2 ¹⁸	2 ¹⁷	2 ¹⁶
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
OUT27	OUT26	OUT25	OUT24	OUT23	OUT22	OUT21	OUT20	OUT17	OUT16	OUT15	OUT14	OUT13	OUT12	OUT11	OUT10

HIGH レベルにするときに 0、変更しないときに 1 を書き込みます。

● CB-34/IO の汎用 I/O PORT に書き込む場合

・ N10 ~ N17、N20 ~ N27、OUT10 ~ OUT17、OUT20 ~ OUT27 をオープンしている場合

2 ³¹	2 ³⁰	2 ²⁹	2 ²⁸	2 ²⁷	2 ²⁶	2 ²⁵	2 ²⁴	2 ²³	2 ²²	2 ²¹	2 ²⁰	2 ¹⁹	2 ¹⁸	2 ¹⁷	2 ¹⁶
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
OUT27	OUT26	OUT25	OUT24	OUT23	OUT22	OUT21	OUT20	OUT17	OUT16	OUT15	OUT14	OUT13	OUT12	OUT11	OUT10

HIGH レベルにするときに 0、変更しないときに 1 を書き込みます。

・ N30 ~ N37、N40 ~ N47、OUT30 ~ OUT37、OUT40 ~ OUT47 をオープンしている場合

2 ³¹	2 ³⁰	2 ²⁹	2 ²⁸	2 ²⁷	2 ²⁶	2 ²⁵	2 ²⁴	2 ²³	2 ²²	2 ²¹	2 ²⁰	2 ¹⁹	2 ¹⁸	2 ¹⁷	2 ¹⁶
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
OUT47	OUT46	OUT45	OUT44	OUT43	OUT42	OUT41	OUT40	OUT37	OUT36	OUT35	OUT34	OUT33	OUT32	OUT31	OUT30

HIGH レベルにするときに 0、変更しないときに 1 を書き込みます。

psResult

··· この関数を実行した結果が格納される<u>RESULT 構造体</u>のポインタを指定します。 NULL ポインタまたは 0 が指定されると、実行結果が格納されません。

戻り値

汎用 I/O PORT OR 書き込み関数

AL I/O ユニット対応 DLL

CB-08 CB-34/IO

機能

指定された汎用 I/O PORT の内容と、指定された変数の内容の論理和を、指定された汎用 I/O PORT に書き込みます。

書式

C言語 BOOL ACIO_BPortOrOut (DWORD hPort, DWORD FAR *pData, ACIO_S_RESULT FAR *psResult);

VB Function ACIO_BPortOrOut (ByVal hPort As Long, pData As Long, psResult As ACIO_S_RESULT) As Boolean

VB.NET Function ACIO_BPortOrOut (ByVal hPort As Integer, ByRef pData As Integer, ByRef psResult As ACIO S RESULT) As Boolean

<u>Delphi</u> function ACIO BPortOrOut (hPort: DWORD; var pData: DWORD; var psResult: ACIO S RESULT): Boolean;

引数

hPort

· · · 汎用 I/O PORT ハンドルを指定します。

pData

● CB-08 の汎用 I/O PORT に書き込む場合

2 ³¹	2 ³⁰	2 ²⁹	2 ²⁸	2 ²⁷	2 ²⁶	2 ²⁵	2 ²⁴	2 ²³	2 ²²	2 ²¹	2 ²⁰	2 ¹⁹	2 ¹⁸	2 ¹⁷	2 ¹⁶
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	28	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
OUT27	OUT26	OUT25	OUT24	OUT23	OUT22	OUT21	OUT20	OUT17	OUT16	OUT15	OUT14	OUT13	OUT12	OUT11	OUT10

変更しないときに 0、LOW レベルにするときに 1 を書き込みます。

● CB-34/IO の汎用 I/O PORT に書き込む場合

· IN10 ~ IN17、IN20 ~ IN27、OUT10 ~ OUT17、OUT20 ~ OUT27 をオープンしている場合

2 ³¹	2 ³⁰	2 ²⁹	2 ²⁸	2 ²⁷	2 ²⁶	2 ²⁵	2 ²⁴	2 ²³	2 ²²	2 ²¹	2 ²⁰	2 ¹⁹	2 ¹⁸	2 ¹⁷	2 ¹⁶
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
OUT27	OUT26	OUT25	OUT24	OUT23	OUT22	OUT21	OUT20	OUT17	OUT16	OUT15	OUT14	OUT13	OUT12	OUT11	OUT10

変更しないときに 0、LOW レベルにするときに 1 を書き込みます。

・ N30 ~ N37、N40 ~ N47、OUT30 ~ OUT37、OUT40 ~ OUT47 をオープンしている場合

2 ³¹	2 ³⁰	2 ²⁹	2 ²⁸	2 ²⁷	2 ²⁶	2 ²⁵	2 ²⁴	2 ²³	2 ²²	2 ²¹	2 ²⁰	2 ¹⁹	2 ¹⁸	2 ¹⁷	2 ¹⁶
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
OUT47	OUT46	OUT45	OUT44	OUT43	OUT42	OUT41	OUT40	OUT37	OUT36	OUT35	OUT34	OUT33	OUT32	OUT31	OUT30

変更しないときに 0、LOW レベルにするときに 1 を書き込みます。

psResult

··· この関数を実行した結果が格納される<u>RESULT 構造体</u>のポインタを指定します。 NULL ポインタまたは 0 が指定されると、実行結果が格納されません。

戻り値

汎用 I/O PORT 指定信号 LOW レベル書き込み関数

AL I/O ユニット対応 DLL

CB-08 CB-34/IO

機能

指定された汎用 I/O PORT の指定信号を LOW レベルにします。

書式

C言語 BOOL ACIO_BSigLowOut (DWORD hPort, WORD SigNo, ACIO_S_RESULT FAR *psResult);

VB Function ACIO_BSigLowOut (ByVal hPort As Long, ByVal SigNo As Integer, psResult As ACIO_S_RESULT) As Boolean

VB.NET Function ACIO_BSigLowOut (ByVal hPort As Integer, ByVal SigNo As Short, ByRef psResult As ACIO_S_RESULT)
As Boolean

Delphi function ACIO_BSigLowOut (hPort: DWORD; SigNo: WORD; var psResult: ACIO_S_RESULT): Boolean;

引数

hPort ··· 汎用 I/O PORT ハンドルを指定します。

SigNo ··· 信号を指定します。

● CB-08 の汎用 I/O PORT に書き込む場合

引数 SigNo の値	指定信号	引数 SigNo の値	指定信号
ACIO_CB08_OUT10	OUT10	ACIO_CB08_OUT20	OUT20
ACIO_CB08_OUT11	OUT11	ACIO_CB08_OUT21	OUT21
ACIO_CB08_OUT12	OUT12	ACIO_CB08_OUT22	OUT22
ACIO_CB08_OUT13	OUT13	ACIO_CB08_OUT23	OUT23
ACIO_CB08_OUT14	OUT14	ACIO_CB08_OUT24	OUT24
ACIO_CB08_OUT15	OUT15	ACIO_CB08_OUT25	OUT25
ACIO_CB08_OUT16	OUT16	ACIO_CB08_OUT26	OUT26
ACIO_CB08_OUT17	OUT17	ACIO_CB08_OUT27	OUT27

● CB-34/IO の汎用 I/O PORT に書き込む場合

 \cdot $\overline{\text{IN}10} \sim \overline{\text{IN}17}$ 、 $\overline{\text{IN}20} \sim \overline{\text{IN}27}$ 、 $\overline{\text{OUT}10} \sim \overline{\text{OUT}17}$ 、 $\overline{\text{OUT}20} \sim \overline{\text{OUT}27}$ をオープンしている場合

引数 SigNo の値	指定信号	引数 SigNo の値	指定信号
ACIO_CB34_OUT10	OUT10	ACIO_CB34_OUT20	OUT20
ACIO_CB34_OUT11	OUT11	ACIO_CB34_OUT21	OUT21
ACIO_CB34_OUT12	OUT12	ACIO_CB34_OUT22	OUT22
ACIO_CB34_OUT13	OUT13	ACIO_CB34_OUT23	OUT23
ACIO_CB34_OUT14	OUT14	ACIO_CB34_OUT24	OUT24
ACIO_CB34_OUT15	OUT15	ACIO_CB34_OUT25	OUT25
ACIO_CB34_OUT16	OUT16	ACIO_CB34_OUT26	OUT26
ACIO_CB34_OUT17	OUT17	ACIO_CB34_OUT27	OUT27

 \cdot $\overline{\text{IN30}} \sim \overline{\text{IN37}}$ 、 $\overline{\text{IN40}} \sim \overline{\text{IN47}}$ 、 $\overline{\text{OUT30}} \sim \overline{\text{OUT37}}$ 、 $\overline{\text{OUT40}} \sim \overline{\text{OUT47}}$ をオープンしている場合

引数 SigNo の値	指定信号	引数 SigNo の値	指定信号
ACIO_CB34_OUT30	OUT30	ACIO_CB34_OUT40	OUT40
ACIO_CB34_OUT31	OUT31	ACIO_CB34_OUT41	OUT41
ACIO_CB34_OUT32	OUT32	ACIO_CB34_OUT42	OUT42
ACIO_CB34_OUT33	OUT33	ACIO_CB34_OUT43	OUT43
ACIO_CB34_OUT34	OUT34	ACIO_CB34_OUT44	OUT44
ACIO_CB34_OUT35	OUT35	ACIO_CB34_OUT45	OUT45
ACIO_CB34_OUT36	OUT36	ACIO_CB34_OUT46	OUT46
ACIO_CB34_OUT37	OUT37	ACIO_CB34_OUT47	OUT47

psResult

··· この関数を実行した結果が格納される<u>RESULT 構造体</u>のポインタを指定します。 NULL ポインタまたは 0 が指定されると、実行結果が格納されません。

戻り値

汎用 I/O PORT 指定信号 HIGH レベル書き込み関数

AL I/O ユニット対応 DLL

CB-08 CB-34/IO

機能

指定された汎用 I/O PORT の指定信号を HIGH レベルにします。

書式

C言語 BOOL ACIO_BSigHighOut (DWORD hPort, WORD SigNo, ACIO_S_RESULT FAR *psResult);

<u>VB</u> Function ACIO_BSigHighOut (ByVal *hPort* As Long, ByVal *SigNo* As Integer, *psResult* As ACIO_S_RESULT) As Boolean

<u>VB.NET</u> Function ACIO_BSigHighOut (ByVal *hPort* As Integer, ByVal *SigNo* As Short, ByRef *psResult* As ACIO_S_RESULT) As Boolean

Delphi function ACIO_BSigHighOut (hPort: DWORD; SigNo: WORD; var psResult: ACIO_S_RESULT): Boolean;

引数

hPort ··· 汎用 I/O PORT ハンドルを指定します。

SigNo … 信号を指定します。

● CB-08 の汎用 I/O PORT に書き込む場合

引数 SigNo の値	指定信号	引数 SigNo の値	指定信号
ACIO_CB08_OUT10	OUT10	ACIO_CB08_OUT20	OUT20
ACIO_CB08_OUT11	OUT11	ACIO_CB08_OUT21	OUT21
ACIO_CB08_OUT12	OUT12	ACIO_CB08_OUT22	OUT22
ACIO_CB08_OUT13	OUT13	ACIO_CB08_OUT23	OUT23
ACIO_CB08_OUT14	OUT14	ACIO_CB08_OUT24	OUT24
ACIO_CB08_OUT15	OUT15	ACIO_CB08_OUT25	OUT25
ACIO_CB08_OUT16	OUT16	ACIO_CB08_OUT26	OUT26
ACIO_CB08_OUT17	OUT17	ACIO_CB08_OUT27	OUT27

● CB-34/IO の汎用 I/O PORT に書き込む場合

 \cdot $\overline{\text{IN}10} \sim \overline{\text{IN}17}$ 、 $\overline{\text{IN}20} \sim \overline{\text{IN}27}$ 、 $\overline{\text{OUT}10} \sim \overline{\text{OUT}17}$ 、 $\overline{\text{OUT}20} \sim \overline{\text{OUT}27}$ をオープンしている場合

引数 SigNo の値	指定信号	引数 SigNo の値	指定信号
ACIO_CB34_OUT10	OUT10	ACIO_CB34_OUT20	OUT20
ACIO_CB34_OUT11	OUT11	ACIO_CB34_OUT21	OUT21
ACIO_CB34_OUT12	OUT12	ACIO_CB34_OUT22	OUT22
ACIO_CB34_OUT13	OUT13	ACIO_CB34_OUT23	OUT23
ACIO_CB34_OUT14	OUT14	ACIO_CB34_OUT24	OUT24
ACIO_CB34_OUT15	OUT15	ACIO_CB34_OUT25	OUT25
ACIO_CB34_OUT16	OUT16	ACIO_CB34_OUT26	OUT26
ACIO_CB34_OUT17	OUT17	ACIO_CB34_OUT27	OUT27

 \cdot $\overline{\text{IN30}} \sim \overline{\text{IN37}}$ 、 $\overline{\text{IN40}} \sim \overline{\text{IN47}}$ 、 $\overline{\text{OUT30}} \sim \overline{\text{OUT37}}$ 、 $\overline{\text{OUT40}} \sim \overline{\text{OUT47}}$ をオープンしている場合

引数 SigNo の値	指定信号	引数 SigNo の値	指定信号
ACIO_CB34_OUT30	OUT30	ACIO_CB34_OUT40	OUT40
ACIO_CB34_OUT31	OUT31	ACIO_CB34_OUT41	OUT41
ACIO_CB34_OUT32	OUT32	ACIO_CB34_OUT42	OUT42
ACIO_CB34_OUT33	OUT33	ACIO_CB34_OUT43	OUT43
ACIO_CB34_OUT34	OUT34	ACIO_CB34_OUT44	OUT44
ACIO_CB34_OUT35	OUT35	ACIO_CB34_OUT45	OUT45
ACIO_CB34_OUT36	OUT36	ACIO_CB34_OUT46	OUT46
ACIO_CB34_OUT37	OUT37	ACIO_CB34_OUT47	OUT47

psResult

··· この関数を実行した結果が格納される<u>RESULT 構造体</u>のポインタを指定します。 NULL ポインタまたは 0 が指定されると、実行結果が格納されません。

戻り値

ラッチ機能選択書き込み関数

AL I/O ユニット対応 DLL

CB-34/IO

機能

指定された汎用 I/O PORT のラッチ機能を設定します。

書式

C言語 BOOL ACIO_BWLatchSel (DWORD hPort, WORD FAR *pData, ACIO_S_RESULT FAR *psResult);

VB Function ACIO_BWLatchSel (ByVal hPort As Long, pData As Integer, psResult As ACIO_S_RESULT) As Boolean

<u>VB.NET</u> Function ACIO_BWLatchSel (ByVal *hPort* As Integer, ByRef *pData* As Short, ByRef *psResult* As ACIO_S_RESULT) As Boolean

Delphi function ACIO_BWLatchSel(hPort: DWORD; var pData: WORD; var psResult: ACIO_S_RESULT): Boolean;

引数

hPort \cdots $\overline{\text{IN}10} \sim \overline{\text{IN}17}$ 、 $\overline{\text{IN}20} \sim \overline{\text{IN}27}$ 、 $\overline{\text{OUT}10} \sim \overline{\text{OUT}17}$ 、 $\overline{\text{OUT}20} \sim \overline{\text{OUT}27}$ をオープンした汎用 I/O PORT

ハンドルを指定します。

pData ・・・・ 書き込むデータが格納されている変数のポインタを指定します。

変数の内容は、次のようになります。

2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
0	0	0	0	0	0	0	0	0	0	0	0	IN13L	IN12L	IN11L	IN10L

IN10L ~ IN13L で、IN10 ~ IN13 のラッチ機能を選択します。

ラッチ機能を無効にするときに 0、有効にするときに 1を書き込みます。

psResult ・・・ この関数を実行した結果が格納される <u>RESULT 構造体</u>のポインタを指定します。 NULL ポインタまたは 0 が指定されると、実行結果が格納されません。

戻り値

ラッチエッジ選択書き込み関数

AL I/O ユニット対応 DLL

CB-34/IO

機能

指定された汎用 I/O PORT のラッチのエッジを設定します。

<u>ラッチ機能選択書き込み関数</u>で、ラッチ機能が有効にされているビットのみで有効です。

書式

C言語 BOOL ACIO_BWLatchEdge (DWORD hPort, WORD FAR *pData, ACIO_S_RESULT FAR *psResult);

VB Function ACIO_BWLatchEdge (ByVal hPort As Long, pData As Integer, psResult As ACIO_S_RESULT) As Boolean

VB.NET Function ACIO_BWLatchEdge (ByVal hPort As Integer, ByRef pData As Short, ByRef psResult As ACIO_S_RESULT) As Boolean

<u>Delphi</u> function ACIO BWLatchEdge (hPort: DWORD; var pData: WORD; var psResult: ACIO S RESULT): Boolean;

引数

hPort · · · · $\overline{\text{IN}10} \sim \overline{\text{IN}17}$ 、 $\overline{\text{IN}20} \sim \overline{\text{IN}27}$ 、 $\overline{\text{OUT}10} \sim \overline{\text{OUT}17}$ 、 $\overline{\text{OUT}20} \sim \overline{\text{OUT}27}$ をオープンした汎用 I/O PORT

ハンドルを指定します。

pData · · · 書き込むデータが格納されている変数のポインタを指定します。

変数の内容は、次のようになります。

2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
0	0	0	0	0	0	0	0	0	0	0	0	IN13E	IN12E	IN11E	IN10E

IN10E ~ IN13E で、 $\overline{\text{IN10}}$ ~ $\overline{\text{IN13}}$ のラッチのエッジを選択します。

立ち下がりエッジにするときに 0、立ち上がりエッジにするときに 1 を書き込みます。

psResult

··· この関数を実行した結果が格納される<u>RESULT 構造体</u>のポインタを指定します。 NULL ポインタまたは 0 が指定されると、実行結果が格納されません。

戻り値

ラッチ機能選択読み出し関数

AL I/O ユニット対応 DLL

CB-34/IO

機能

指定された汎用 I/O PORT のラッチ機能の設定を読み出します。

書式

C言語 BOOL ACIO_BRLatchSel (DWORD hPort, WORD FAR *pData, ACIO_S_RESULT FAR *psResult);

VB Function ACIO BRLatchSel (ByVal hPort As Long, pData As Integer, psResult As ACIO S RESULT) As Boolean

<u>VB.NET</u> Function ACIO_BRLatchSel (ByVal *hPort* As Integer, ByRef *pData* As Short, ByRef *psResult* As ACIO_S_RESULT) As Boolean

<u>Delphi</u> function ACIO_BRLatchSel (hPort: DWORD; var pData: WORD; var psResult: ACIO_S_RESULT): Boolean;

引数

hPort \cdots $\overline{\text{IN}10} \sim \overline{\text{IN}17}$ 、 $\overline{\text{IN}20} \sim \overline{\text{IN}27}$ 、 $\overline{\text{OUT}10} \sim \overline{\text{OUT}17}$ 、 $\overline{\text{OUT}20} \sim \overline{\text{OUT}27}$ をオープンした汎用 I/O PORT

ハンドルを指定します。

pData ・・・ 読み出した内容が格納されている変数のポインタを指定します。

変数の内容は、次のようになります。

2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
0	0	0	0	0	0	0	0	0	0	0	0	IN13L	IN12L	IN11L	IN10L

 $\overline{\text{IN}10\text{L}} \sim \overline{\text{IN}13\text{L}} = \overline{\text{IN}10} \sim \overline{\text{IN}13}$ のラッチ機能が読み出されます。 ラッチ機能が無効なときに 0、有効なときに 1 が読み出されます。

psResult

··· この関数を実行した結果が格納される <u>RESULT 構造体</u>のポインタを指定します。 NULL ポインタまたは 0 が指定されると、実行結果が格納されません。

戻り値

ラッチエッジ選択読み出し関数

AL I/O ユニット対応 DLL

CB-34/IO

機能

指定された汎用 I/O PORT のラッチのエッジの設定状態を読み出します。

書式

C言語 BOOL ACIO_BRLatchEdge (DWORD hPort, WORD FAR *pData, ACIO_S_RESULT FAR *psResult);

VB Function ACIO BRLatchEdge (ByVal hPort As Long, pData As Integer, psResult As ACIO S RESULT) As Boolean

VB.NET Function ACIO_BRLatchEdge (ByVal hPort As Integer, ByRef pData As Short, ByRef psResult As ACIO S RESULT) As Boolean

Delphi function ACIO_BRLatchEdge (hPort: DWORD; var pData: WORD; var psResult: ACIO_S_RESULT): Boolean;

引数

hPort \cdots $\overline{\text{IN}10} \sim \overline{\text{IN}17}$ 、 $\overline{\text{IN}20} \sim \overline{\text{IN}27}$ 、 $\overline{\text{OUT}10} \sim \overline{\text{OUT}17}$ 、 $\overline{\text{OUT}20} \sim \overline{\text{OUT}27}$ をオープンした汎用 I/O PORT

ハンドルを指定します。

pData · · · 読み出した内容が格納されている変数のポインタを指定します。

変数の内容は、次のようになります。

2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
0	0	0	0	0	0	0	0	0	0	0	0	IN13E	IN12E	IN11E	IN10E

 $IN10E \sim IN13E$ に、 $\overline{IN10} \sim \overline{IN13}$ のラッチのエッジが読み出されます。 立ち下がりエッジのときに 0、立ち上がりエッジのときに 1 が読み出されます。

psResult ・・・ この関数を実行した結果が格納される <u>RESULT 構造体</u>のポインタを指定します。 NULL ポインタまたは 0 が指定されると、実行結果が格納されません。

戻り値

ラッチクリア書き込み関数

AL I/O ユニット対応 DLL

CB-34/IO

機能

指定された汎用 I/O PORT のラッチデータをクリアします。

書式

C言語 BOOL ACIO_BWLatchClr (DWORD hPort, WORD FAR *pData, ACIO_S_RESULT FAR *psResult);

VB Function ACIO_BWLatchClr (ByVal hPort As Long, pData As Integer, psResult As ACIO_S_RESULT) As Boolean

VB.NET Function ACIO_BWLatchClr (ByVal hPort As Integer, ByRef pData As Short, ByRef psResult As ACIO_S_RESULT)
As Boolean

Delphi function ACIO_BWLatchClr (hPort: DWORD; var pData: WORD; var psResult: ACIO_S_RESULT) : Boolean;

引数

hPort · · · · $\overline{\text{IN}10} \sim \overline{\text{IN}17}$ 、 $\overline{\text{IN}20} \sim \overline{\text{IN}27}$ 、 $\overline{\text{OUT}10} \sim \overline{\text{OUT}17}$ 、 $\overline{\text{OUT}20} \sim \overline{\text{OUT}27}$ をオープンした汎用 I/O PORT ハンドルを指定します。

pData · · · 書き込むデータが格納されている変数のポインタを指定します。

変数の内容は、次のようになります。

2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
0	0	0	0	0	0	0	0	0	0	0	0	IN13C	IN12C	IN11C	IN10C

 $IN10C \sim IN13C$ が、 $\overline{IN10} \sim \overline{IN13}$ のラッチデータのクリアビットになります。 クリアしないときに 0、クリアするときに 1 を書き込みます。

psResult

··· この関数を実行した結果が格納される <u>RESULT 構造体</u>のポインタを指定します。 NULL ポインタまたは 0 が指定されると、実行結果が格納されません。

戻り値

6. ソフト開発に必要なファイル

MPL-29 の各種 DLL を用いてソフト開発を行うためには、次のファイルが必要です。

● ALマスターボード対応 DLL を用いたソフト開発に必要なファイル

ファイル	ファイルの場所
Visual C++ヘッダファイル	¥Program Files¥Mpl29¥Bin¥Vc¥AlPciA.h
Visual C++ライブラリファイル	¥Program Files¥Mpl29¥Bin¥Vc¥VcAlPciA.lib
C++ Builder ヘッダファイル	¥Program Files¥Mpl29¥Bin¥Builder¥AlPciA.h
C++ Builder ライブラリファイル	¥Program Files¥Mpl29¥Bin¥Builder¥BcAlPciA.lib
Visual Basic .NET 関数定義ファイル	¥Program Files¥Mpl29¥Bin¥Vb.NET¥AlPciA.vb
Visual Basic 関数定義ファイル	¥Program Files¥Mpl29¥Bin¥Vb¥AlPciA.bas

● AL I/O ユニット対応 DLL を用いたソフト開発に必要なファイル

ファイル	ファイルの場所				
Visual C++ヘッダファイル	¥Program Files¥Mpl29¥Bin¥Vc¥AcIoA.h				
Visual C++ライブラリファイル	¥Program Files¥Mpl29¥Bin¥Vc¥VcAcIoA.lib				
C++ Builder ヘッダファイル	¥Program Files¥Mpl29¥Bin¥Builder¥AcIoA.h				
C++ Builder ライブラリファイル	¥Program Files¥Mpl29¥Bin¥Builder¥BcAcIoA.lib				
Visual Basic .NET 関数定義ファイル	¥Program Files¥Mpl29¥Bin¥Vb.NET¥AcIoA.vb				
Visual Basic 関数定義ファイル	¥Program Files¥Mpl29¥Bin¥Vb¥AcIoA.bas				

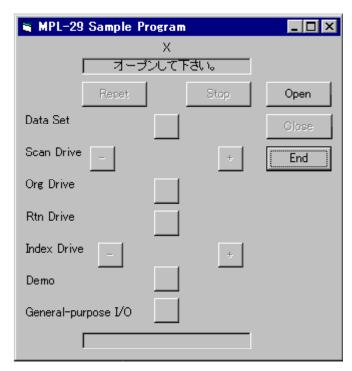
- AL MCC05 ユニット対応 DLL を用いたソフト開発に必要なファイル AL MCC05 ユニット取扱説明書をご覧ください
- AL MCC06 ユニット対応 DLL を用いたソフト開発に必要なファイル AL MCC06 ユニット取扱説明書をご覧ください

7. サンプルプログラム

7-1. 概要

Visual C++ .NET、Visual C++、C++ Builder、Visual Basic .NET、Visual Basic のサンプルプログラムが用意されています。 サンプルプログラムのファイルは、インストール時に指定する次のフォルダに格納されています。 (インストール時にパスを Program Files と指定した場合)

言語	ファイルの場所				
Visual C++ .NET, Visual C++	¥Program Files¥Mpl29¥Sample¥Vc				
C++ Builder	¥Program Files¥Mpl29¥Sample¥Builder				
Visual Basic .NET	¥Program Files¥Mpl29¥Sample¥Vb.NET				
Visual Basic	¥Program Files¥Mpl29¥Sample¥Vb				


7-2. ご使用になる前に

環境設定ツールで AL 通信ボーレート、リトライ回数を設定して下さい。 パソコン、CB-09、C-772 (SLAVE ADDRESS = H'01)、CB-08 (SLAVE ADDRESS = H'02)を接続して下さい。

7-3. 仕様

サンプルプログラムには、Visual C++ 6.0、C++ Builder 5.0、Visual Basic .NET 2002、Visual Basic 6.0 で作成したものを用意してあります。これらは、同じ仕様で作られています。

サンプルプログラムを参照する場合には、それぞれの言語の開発環境からプロジェクトを開いて下さい。

Open ボタン	デバイス(C-772 X 軸)をオープンします。
Open ホタン Close ボタン	+
	デバイス(C-772 X 軸)をクローズします。
End ボタン	サンプルプログラムを終了します。
Reset ボタン	ADDRESS COUNTER を 0 に PRESET します。
Stop ボタン	DRIVE を即時停止します。
Data Set ボタン	次の設定にします。
	RATE TYPE : L1-TYPE
	URATE : 10ms/1000Hz LSPD : 1000Hz
	DRATE : 10ms/1000Hz
Scan Drive +ボタン	+(CW)方向へ SCAN DRIVE します。
Scan Drive -ボタン	- (CCW)方向へ SCAN DRIVE します。
Org Drive ボタン	機械原点検出形式 ORG-3 で ORIGIN DRIVE を行います。
Rtn Drive ボタン	絶対 ADDRESS 0 へ移動する ABSOLUTE INDEX DRIVE を行います。
Index Drive +ボタン	+(CW)方向へ 3000 パルス移動する INCREMENTAL INDEX DRIVE を行います。
Index Drive -ボタン	-(CCW)方向へ 3000 パルス移動する INCREMENTAL INDEX DRIVE を行います。
Demo ボタン	次の動作を連続して行います。
	機械原点の検出(ORIGIN DRIVE)
	電気原点の設定(ADDRESS COUNTER を 0 に PRESET)
	+(CW)方向へ 4000 パルス移動を 4 回繰り返す (INCREMENTAL INDEX DRIVE)
	絶対 ADDRESS 30000 へ移動(ABSOLUTE INDEX DRIVE)
	電気原点へ移動(ABSOLUTE INDEX DRIVE)
General-Purpose I/O ボタン	次の動作を連続して行います。
	I/O PORT OPEN (CB-08)
	IN10 - IN12 が HIGH になるまで待つ
	OUT10 - OUT12 を HIGH にする
	+(CW)方向へ 1000 パルス移動(INCREMENTAL INDEX DRIVE)
	OUT10 を LOW にする
	IN11 が LOW になるまで待つ
	+(CW)方向へ 2000 パルス移動 (INCREMENTAL INDEX DRIVE)
	OUT11 を LOW にする
	IN12 が LOW になるまで待つ
	+(CW)方向へ 3000 パルス移動 (INCREMENTAL INDEX DRIVE)
	OUT12 を LOW にする
	I/O PORT CLOSE (CB-08)

8. トラブルシューティング

作成したアプリケーションプログラムが正常に動作しない場合、次のことを行って下さい。

(1) マスターボードの認識

スレーブ情報確認プログラムを起動して下さい。 スレーブ情報確認プログラムは、起動時にマスターボードの認識を確認しています。

(2) スレーブの認識

スレーブ情報確認プログラムは、実際に AL 通信を行い、各スレーブアドレスに接続されているスレーブを検出し、検出結果を表示しています。

メッセージ	スレーブの検出結果
Unconnection	スレーブが接続されていないことを示しています。
C-770AL	C-770AL が接続されていることを示しています。
CB-08	CB-08 が接続されていることを示しています。
CDB-5420-AL770	CDB-5420-AL770 が接続されていることを示しています。
CAD-5410-AL770	CAD-5410-AL770 が接続されていることを示しています。
C-771	C-771 が接続されていることを示しています。
CD-773/ADB5331A	CD-773/ADB5331A が接続されていることを示しています。
C-772	C-772 が接続されていることを示しています。
CB-34	CB-34 が接続されていることを示しています。

(3) RESULT 構造体の確認

各関数は、アプリケーションプログラムによって与えられた引数の内容をチェックし、エラーがある場合は、FALSE(0)を返し、正常である場合は TRUE(1)を返します。

関数が正常に動作していないと思われるステップの後にブレークポイントを設定し、関数が返した値が TRUE(1) であることを確認して下さい。

TRUE(1)でない場合は、エラー原因を特定する為に RESULT 構造体の内容を参照して下さい。

■ 製品保証

保証期間と保証範囲について

- 納入品の保証期間は、納入後1ヶ年と致します。
- 上記保証期間中に当社の責により故障を生じた場合は、その修理を当社の責任において行います。 (日本国内のみ)

ただし、次に該当する場合は、この保証対象範囲から除外させて頂きます。

- (1) お客様の不適当な取り扱い、ならびに使用による場合。
- (2) 故障の原因が、当製品以外からの事由による場合。
- (3) お客さまの改造、修理による場合。
- (4) 製品出荷当時の科学・技術水準では予見が不可能だった事由による場合。
- (5) その他、天災、災害等、当社の責にない場合。
- (注1)ここでいう保証は、納入品単体の保証を意味するもので、納入品の故障により誘発される損害はご容赦頂きます。 (注2)当社において修理済みの製品に関しましては、保証外とさせて頂きます。

技術相談のお問い合わせ

TEL. (042) 664-5382 FAX. (042) 666-5664 E-mail s-support@melec-inc.com

販売に関するお問い合わせ

TEL. (042) 664-5384 FAX. (042) 666-2031

株式会社 **メレック** 制御機器営業部 〒193-0834 東京都八王子市東浅川町516-10

URL:http://www.melec-inc.com