
Melec

ステッピングモータコントローラドライバ

CAD-5410-AL770

取扱説明書

(設計者用)

本製品を使用する前に、この取扱説明書をよく読んで 十分に理解してください。 この取扱説明書は、いつでも取り出して読めるように

はじめに

この取扱説明書は、「ALシリーズ対応ステッピングモータ用 1 軸コントローラドライバスレーブ CAD-5410-AL770」を正しく安全に使用していただくために、仕様に重きをおいた取り扱い方法について、ステッピングモータを使った制御装置の設計を担当される方を対象に説明しています。

使用する前に、この取扱説明書を良く読んで十分に理解してください。この取扱説明書は、いつでも取り出して読めるように保管してください。

安全に関する事項の記述方法について

本製品は正しい方法で取り扱うことが大切です。

誤った方法で取り扱った場合、予期しない事故を引き起こし、人身への障害や財産の損壊等の被害を被るおそれがあります。

そのような事故の多くは、危険な状況を予め知っていれば回避することができます。 そのため、この取扱説明書では危険な状況が予想できる場合には、注意事項が記述して あります。

それらの記述は、次のようなシンボルマークとシグナルワードで示しています。

▲ 警告

取り扱いを誤った場合に死亡、又は重傷を負うおそれのある 警告事項を示します。

⚠ 注意

取り扱いを誤った場合に、軽傷を負うおそれや物的損害が 発生するおそれがある注意事項を示します。

はじめに

安全に関する事項の記述方法について

	目 次	PΑ	\GE
1	. 安全		
			8
	1-2.取扱上の安全情報		9
	1-3.安全設計上の注意事項	1	
		·	_
2	.概要		
		1	3
2	甘木堪式		
J	. 基本構成 . 3-1.機能ブロック図	4	2
	- 3-1.機能ノロック図		
	3-3.システム構成例	-	_
	3-3. ノヘテム情 (水)	1	4
4	. 仕様		
	4-1 .AL シリーズ仕様	1	5
	4-2.基本機能	- 1	5
	4-3.定格		
	4-4.オプション		
	4-5.応用機能	- 1	7
_	-nt-		
5	. 設定		_
	5-1.AL シリーズ上のアドレス設定(S1)	·-]	9
	5-2.AL シリーズ通信速度設定(S1) ····································	-: 	9
	5-3.終端抵抗の設定(S2)	- 1	9
	5-4.ドライバ設定部(S3)	2	. 0
	5-6.モータ選択スイッチの設定	- 2	. I . 4
	5-7.高速 POWER 出力選択スイッチの設定	2	. 1
	5-8.DRIVE 電流選択スイッチの設定		
	5-9.ステップ角選択スイッチの設定	Z	ر ا
	5-10.HOLD 電流調整トリマーの設定	Z	. 4
6	・ポート説明		
Ĭ	6-1.I/O PORT 表	- 2	5
	6-2.DRIVE COMMAND PORT		
	6-3.DRIVE DATA1,2,3 PORT(WRITE)	2	5
	6-4.DRIVE DATA1,2,3 PORT(READ)	·- 2	5
	6-5.COUNTER COMMAND PORT	2	5
	6-6.COUNTER DATA1,2,3 PORT(WRITE)	2	5
	6-7.STATUS1 PORT	2	6
	6-8.STATUS2 PORT		
	6-9.STATUS3 PORT	2	7
	6-10.STATUS4 PORT	- 2	7
	6-11.STATUS5 PORT	- 2	8

	PA	GL
7.基本機能 DRIVE COMMAND 説明及び動作シーケンス		
7-1.基本機能 DRIVE COMMAND の COMMAND 表	2	9
7-2.特殊 COMMAND の COMMAND 表	3	0
7-3.NO OPERATION COMMAND	- 3	1
7-4.SPEC INITIALIZE1 COMMAND	3	1
7-5.PULSE COUNTER INITIALIZE COMMAND	- 3	2
7-6.ADDRESS INITIALIZE COMMAND	- 3	4
7-7.ADDRESS READ COMMAND	- 3	4
7-8.RATE SET COMMAND		
7-9.LSPD SET COMMAND		
7-10.HSPD SET COMMAND		
7-11.SET DATA READ COMMAND	3	7
7-12.+/-JOG COMMAND	3	8
7-13.+/-SCAN COMMAND		
7-14.INCREMENTAL INDEX COMMAND	- 3	9
7-15.ABSOLUTE INDEX COMMAND	- 3	9
7-16.CSPD SET COMMAND	- 4	0
7-17.OFFSET PULSE SET COMMAND		
7-18.ORIGIN DELAY SET COMMAND ······	- 4	1
7-19.ORIGIN FLAG RESET COMMAND		
7-20.ORIGIN COMMAND	- 4	1
7-21.SRATE SET COMMAND	- 4	2
7-22.SLSPD SET COMMAND ·······	- 4	2
7-23.SHSPD SET COMMAND ·······	- 4	3
7-24.SSRATE ADJUST COMMAND	- 4	3
7-25.SERATE ADJUST COMMAND	- 4	4
7-26.SCSPD1 ADJUST COMMAND	- 4	4
7-27.SCSPD2 ADJUST COMMAND ·······		
7-28.+/- S-RATE SCAN COMMAND ······		
7-29.INCREMENTAL S-RATE INDEX COMMAND	- 4	6
7-30.ABSOLUTE S-RATE INDEX COMMAND	. 4	6
7-31.ERROR STATUS READ COMMAND		
7-32.SPEED CHANGE COMMAND ······		
7-33.INT MASK COMMAND		
7-34.PORT SELECT COMMAND ······		
7-35.SLOW STOP COMMAND ······		
7-36.FAST STOP COMMAND ······		
7-37.COUNTER READ ······		
7-38.SPEED READ	- 5	0

		PΑ	GE	:
8.	リクエスト説明			
	8-1.リクエスト、アンサーバック フォーマット	- 5	5 1	
	8-2.対 CAD-5410-AL770 リクエスト一覧表	- 5	2	
	8-3.DRIVE COMMAND 一括書き込みリクエスト	- 5	3	
	8-4.DRIVE COMMAND PORT 書き込みリクエスト			
	8-5.DRIVE DATA1 PORT 書き込みリクエスト	- 5	4	
	8-6.DRIVE DATA2 PORT 書き込みリクエスト	- 5	4	
	8-7.DRIVE DATA3 PORT 書き込みリクエスト	- 5	4	
	8-8.COUNTER COMMAND 一括書き込みリクエスト	- 5	5	
	8-9.COUNTER COMMAND PORT 書き込みリクエスト	- 5	5	
	8-10.COUNTER DATA1 PORT 書き込みリクエスト	- 5	6	
	8-11.COUNTER DATA2 PORT 書き込みリクエスト			
	8-12.COUNTER DATA3 PORT 書き込みリクエスト	- 5	6	
	8-13.DRIVE DATA PORT 一括読み出しリクエスト			
	8-14.DRIVE DATA1 PORT 読み出しリクエスト	- 5	7	
	8-15.DRIVE DATA2 PORT 読み出しリクエスト			
	8-16.DRIVE DATA3 PORT 読み出しリクエスト	5	8	
	8-17.STATUS1 PORT 読み出しリクエスト	5	8	
	8-18.STATUS2 PORT 読み出しリクエスト	5	8	
	8-19.STATUS3 PORT 読み出しリクエスト	. 5	9	
	8-20.STATUS4 PORT 読み出しリクエスト	. 5	9	
	8-21.STATUS5 PORT 読み出しリクエスト	. 5	9	
	8-22.制御信号書き込みリクエスト	6	0	
	8-23.制御信号指定ビット書き込みリクエスト	- 6	0	
	8-24.制御信号読み出しリクエスト	6	5 1	
	8-25.制御信号指定ビット読み出しリクエスト	- 6	1	
	8-26.イニシャルエラー	- 6	1	
9.	DRIVE 機能詳細			
	9-1.JOG DRIVE 機能	- 6	2	
		-	2	
	9-3.INDEX DRIVE 機能	- 6	3	
	9-4.DRIVE SPEED 変更機能	- 6	3	
	9-5.機械原点検出機能(ORIGIN DRIVE)	- 6	6 4	
	9-6.LIMIT SENSOR 兼用機械原点検出機能	- 6	6 4	
	9-7 S-RATE SCAN DRIVE 機能	- 6	5	
	9-8.S-RATE INDEX DRIVE 機能	- 6	5	
	9-9.S-RATE DRIVE パラメータ調整機能	- 6	6	
	9-10.減速停止機能	. 6	7	
	9-11.即時停止機能	6	7	
	9-12.LIMIT 停止機能	- 6	8	
	9-13.現在位置読み出し機能	- 6	8	
	9-14.SPEED DATA Hz 単位設定機能	- 6	8	
	9-15.DRIVE TYPE 切り替え機能	- 6	9	
	9-16.現在 SPEED 読み出し機能	- 6	9	
	9-17 設定 DATA 読み出し機能	- 6	9	
	9-18 DRIVE/HOLD 雷流自動切替機能	6	9	
	9-19 于一夕励磁停止入力(M F)機能	- 7	7 0	
	9-20 ステップ角切替入力(C S)機能	- 7	7 0	
	9-21.過熱警告信号出力(O.H.A)機能	- 7	7 0	

		PAG	ЭE
1	0.機械原点検出機能		
	10-1.機械原点検出型式		
	10-2.ORG-0 型式		
	10-3.ORG-1 型式		
	10-4.ORG-2 型式		
	10-5.ORG-3 型式		
	10-6.ORG-4 型式		
	10-7.ORG-5 型式		
	10-8.ORG-10 型式		
	10-9.ORG-11 型式	-	-
	10-10.ORG-12 型式		
	10-11.センサの配置		
	10-12.検出条件	7	7
	10-13.その他の機能	7	7
1	1.COUNTER 機能詳細		
	11-1.機能構成図		
	11-2.ADDRESS COUNTER 機能		
	11-3.PULSE COUNTER 機能	7	9
	11-4.COMPARATOR 機能詳細	8	0
1	2.PULSE COUNTER COMMAND 説明		
'	12-1.PULSE COUNTER COMMAND 表	8	1
	12-2.PULSE COUNTER PRESET COMMAND	8	1
	12-3.PULSE COUNTER COMPARE REGISTER1 SET COMMAND	8	2
	12-4.PULSE COUNTER COMPARE REGISTER2 SET COMMAND	8	2
	12-5.PULSE COUNTER COMPARE REGISTER3 SET COMMAND	8	2
	12-6.PULSE COUNTER COMPARE REGISTER4 SET COMMAND	8	2
	12-7.PULSE COUNTER COMPARE REGISTERS SET COMMAND		
	12 7.1 GEGE GGGN EN GGM YINE NEGIGI EN GGEN GGM, MY		
1	3. 初期仕様一覧表	Q	2
		O	J
1	4. タイミング		
	- ・ ~ - ~ ~ 14-1.AL シリーズ シリアル通信時間	8	4
	14-2.リクエスト書き込み、アンサーバック読み出し TIMING(マスターの TIMING)	8	5
	14-3.JOG DRIVE TIMING	8	5
	14-4.SCAN DRIVE,S-RATE SCAN DRIVE TIMING	8	5
	14-5.INDEX DRIVE.S-RATE INDEX DRIVE TIMING	8	6
	14-6.ORIGIN DRIVE TIMING	8	6
	14-7.SPEED CHANGE TIMING	8	7
	14-8.減速停止 TIMING	8	7
	14-9.即時停止 TIMING	8	7
	14-10.LIMIT 停止 TIMING ····································	8	8
	14-11.STATUS3 PLS COMP1 ~ COMP5 TIMING(PLS COMP1 の例) ···································	8	9
	14-12 DRIVE/HOLD 雷流自動切換タイミング	9	0
	14-13.モータ励磁停止入力(M.F)信号タイミング	9	0
	- 14-14.ステップ角切替入力(C.S)信号タイミング	9	U
	14-15.RESET TIMING	9	0
1	5. コネクタ信号表		
	15-1.シリアル通信コネクタ(J1,J2)	9	1
	15-2 DC 雷源コネクタ(J3)	9	1
	15.3 AC 入力・モータ出力端子台(I6)	9	2
	15-4 ユーザ I/O コネクタ(J4)	9	2
	15-5.ユーザ I/O コネクタ(J8)	9	2

			PAC	ЭE
١	6.入出力回路 16-1.シリアル通信コネクタ等価回路(J1,J2)		0	2
	16-2.ユーザ I/O コネクタ入出力回路(J4)			
	16-3.ユーザ I/O コネクタ入出力回路(J8)			
1	7.取付			
	17-1.取付条件			
	17-2.取付方法		. 9	5
1	8.接続			
•	3. 13-1.AC 入力・モータ出力端子台(J6)との接続例		9	6
	18-2.DC 入力電源との接続例		. 9	8
	18-3.スレーブへの DC 入力電源供給例		- 9	9
	18-4.LIMIT スイッチ又はセンサとの接続例	1	0	0
	18-5.原点センサとの接続例	1	0	0
	18-6.信号入出力コネクタ(J8)の接続例	1	0	2
	18-7.電源の投入]	Ü	3
1	9. 設定と接続の確認			
•	19-1.チェック項目	1	0	4
2	20.保守と点検			
	20-1.保守・点検	1	0	5
	20-2.トラブルシューティング]	O	6
2	21.保管と廃棄			
_	. ・・	1	0	9
	21-2.廃棄	1	0	9
2	2.外形寸法図			_
]	1	U
2	!3. サンプル プログラム			
_	. O. ・	1	1	1
	23-2.AL シリーズ REQUEST 関数例	1	1	2
	23-3.AL シリーズ ADDRESS CHECK 関数例	1	1	3
	23-4.AL シリーズ INITIALIZE PROGRAM 例	1	1	3
	23-5.CAD-5410-AL770 アクセス関数例	1	1	4
	23-6.CB-08 アクセス関数例] -]	6
	23-7.エラー時処理ルーチン	1 1	 1	7
	23-9.CAD-5410-AL770(MCC05v2) NHTIALIZE FROGRAM	1	1 1	7
	23-10.CB-08 実動作プログラム例	1	1	9
2	2.4. DATA 表	د		
	24-1.L-TYPE RATE DATA TABLE	1 -	2	1
	24-2.M-TYPE RATE DATA TABLE	1	1 2	1
	24-4.RATE CURVE GRAPH	1	2	1
	24-5.適用モータ	· 1	1 2	3
	24-6.トルク特性	1	1 2	4
2	25.特別機能	-	. ^	_
		1	ા ડ	2
2	2.6.CAD-5410-AL770 全 COMMAND 一覧表			
۷	26-1 リクエストー覧表	1	1 3	3
	26-2.DRIVE COMMAND の COMMAND 表	1	1 3	4
	26-3.特殊 COMMAND の COMMAND 表	1	1 3	5

1. 安全

1-1.安全上の注意事項

- (1)本製品は、商用電源(AC100V または AC115V)を利用しますので、誤った取り扱いをすると、感電するおそれがあります。
- (2)本製品は、原子力関連機器、航空宇宙関連機器、車両、船舶、人体に直接関わる医療機器、財産に大きな影響が予測される機器など、高度な信頼性が要求される装置向けには設計・製造されておりません。
- (3)ステッピングモータは使用条件によっては停止時および運転中に脱調する場合があります。特に上下駆動 (Z 軸など)で脱調すると搬送物が落下するおそれがあります。 試運転の際に十分な動作確認を行って使用して下さい。
- (4)ステッピングモータは使用条件によっては温度が高くなる場合があります。 表面温度が+100 ℃をこえる場合は冷却対策を施して+100 ℃以下で使用して下さい。
- (5)入力電源の異常や各信号線の断線、製品本体の故障時でもシステム全体が安全側に働くように、フェールセーフ対策を施してください。
- (6)本製品はメカ破損を防ぐための LIMIT(オーバートラベル)信号、並びに異常時に DRIVE を 急停止させるための FSSTOP 信号を備えています。 この信号はいずれも ACTIVE OFF(B 接点入力)となっています。従って LIMIT 信号及び FSSTOP 信号を使用しないシステム構成であっても、両方向の LIMIT 信号並びに FSSTOP 信号を NORMAL ON(GND 接続)状態にしないとパルス出力を行いません。
- (7)本製品は必ずこの取扱説明書に記載の指定方法および仕様の範囲内で使用してください。
- (8)本製品を動作させる前に、基板上の各種設定を行う必要があります。 次に示す各項を参照ください。
 - 5. 設定
 - 13. 初期仕様一覧表
 - 22. 外形寸法図
- (9)DC 電源を供給していないスレーブを接続してシリアル通信を行った場合、通信状態が不安定になることがあります。通信する時は、全てのスレーブへ DC 電源を供給してください。
- (10)この「取扱説明書」の中で示される応用機能の詳細については、別冊「取扱説明書」〔応用機能編〕をご覧ください。

1-2.取扱上の安全情報

●モータ選択スイッチを設定するとき

<u></u> 注意

設定をあやまると、モータの過熱により、やけどをまねくおそれがあります。 正しく設定して下さい。

● DRIVE 電流選択スイッチを設定するとき

⚠ 注意

設定をあやまると、モータの過熱により、やけどをまねくおそれがあります。 正しく設定して下さい。

●ステップ角選択スイッチを設定するとき

⚠ 注意

設定をあやまると、モータの予期せぬ回転により、機械の破損、けがをまねくおそれが あります。

正しく設定して下さい。

● HOLD 電流調整トリマーを設定するとき

⚠ 注意

設定を高くすると、モータの過熱により、やけどをまねくおそれがあります。 必要以上に高くしないで下さい。

●取り付けるとき

▲ 警告

過熱により、火災のおそれがあります。

不燃物に取り付けて下さい。

可燃物から離して下さい。

● AC 入力・モータ接続端子台(J6)を接続するとき

▲ 警告

感電のおそれがあります。

主電源を[OFF]にして下さい。

▲ 警告

感電のおそれがあります。

保護接地端子⑤を確実に接地して下さい。

▲ 警告

感電、火災のおそれがあります。

電源線、モータ線を無理に曲げたり、引っ張ったり、はさみ込んだりしないで下さい。

<u></u> 注意

接続をあやまると、モータ破損のおそれがあります。 モータ配線は正しく接続して下さい。

● STOP 機能を使用するとき

重大な事故を招くおそれがあります。

▲ 警告

コントローラ、ドライバ及び配線系統に異常があった場合、停止できない可能性 があります。

システム異常時の緊急停止としては、駆動系(AC入力)の電源遮断を併用して下さい。 各々の STOP 機能を理解して、装置仕様に合った適切な使い方をしてください。

●機械原点検出型式 ORG-11 又は ORG-12 を使用するとき

<u>企</u>注意

メカ限界点へぶつかり、メカや加工品などを破損させるおそれがあります。 当 ORG 型式では ORG 検出中での LIMIT 停止は減速停止になります。

RATE,HSPD 等を変更した場合、停止点が変化するのでメカ限界点までの距離を確認してください。

●配線するとき

<u></u> 注意

CAD-5410-AL770 を破損させるおそれがあります。

DC 電源極性に注意して配線してください。

⚠ 注意

予期せぬ動作によりメカや加工品の破損を招くおそれがあります。

ノイズによる誤動作を防止するために、各センサや STOP 信号線は動力線と 50mm 以上離して配線してください。

各配線距離は 10m 以内にしてください。

●電源を投入するとき

▲ 警告

感電のおそれがあります。

濡れた手でさわらないでください。

▲ 警告

感電のおそれがあります。

フロントパネルの<u>A</u>表示は、AC電源電圧がかかる端子を示しています。 AC電源投入中および POWER LED 点灯中はさわらないでください。

企 注意

モータの予期せぬ動作により、機械の破損、けがのおそれがあります。 いつでも非常停止できる状態にしてください。

● ORG DRIVE(機械原点検出)を起動するとき

企注意

メカ破損や人的災害を招くおそれがあります。

装置組立後に始めて ORG DRIVE を起動する場合は、ORG 検出に必要な条件を満たしているか確認してから ORG DRIVE を起動してください。

●モータ励磁停止入力(M.F)信号を入力するとき

<u>企</u>注意

モータの保持力低下により、機械の破損、けがをまねくおそれがあります。 安全を確認して入力して下さい。

●過熱警告信号出力(O.H.A)信号が出力するとき

▲ 警告

過熱により、火災のおそれがあります。 この信号が出力されたときは運転を停止してください。

●データの設定をするとき

<u>↑</u> 注意

必ず取扱説明書に書いてある範囲内で設定をして下さい。

誤ったデータ設定を行いますと、予期せぬ動作をまねくおそれがあります。

●保守、点検をするとき

▲ 警告

感電のおそれがあります。

専門の技術者以外は保守・点検を行わないでください。

本製品の点検や交換作業を行う時はネットワークを停止し、全てのノードの電源を遮断してください。

▲ 警告

感電のおそれがあります。

濡れた手でさわらないでください。

▲ 警告

感電のおそれがあります。

フロントパネルの<u>依</u>表示は、AC 電源電圧がかかる端子を示しています。 AC 電源投入中および POWER LED 点灯中はさわらないでください。

▲ 警告

予期せぬ動作により感電、けが、火災をまねくおそれがあります。 CAD-5410-AL770を分解したり、ヒューズ交換等の修理や改造を行わないでください。

1-3.安全設計上の注意事項

本製品を使用された USER 装置の安全対策上の設計としては、USER 装置の危険性と次に示す対策信頼度を考慮し適切な安全対策を行って下さい。

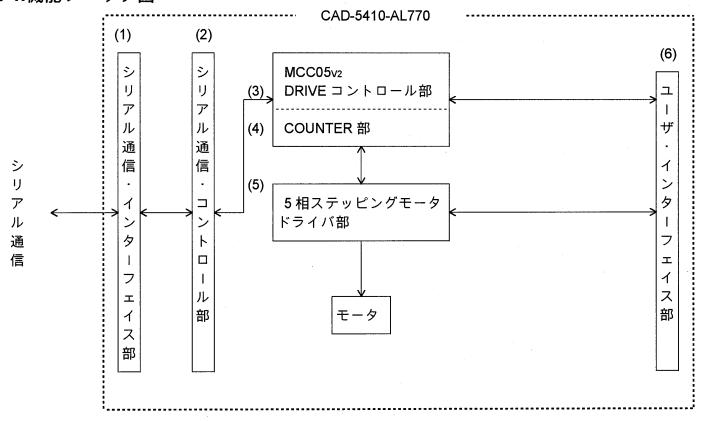
重大な事故を招くおそれがあります。

▲ 警告

コントローラ、ドライバ及び配線系統に異常があった場合、停止できない可能性 があります。

システム異常時の緊急停止としては、駆動系の(AC)電源遮断を併用して下さい。 各々の STOP 機能を理解して、装置仕様に合った適切な使い方をしてください。

本製品及びこれを使用した制御装置の何等かの異常により、PULSE 出力が停止しない場合があります (暴走)。 この様な場合、PULSE 出力を停止させる方法とその信頼度は以下の通りです。


安全性順位	停止方法	機 能 及 び 説 明
1	駆動系電源遮断	装置側で対策する方法です。制御側(DC)と駆動側(AC)の電源を分離して管理し、緊急時は危険な駆動系の電源を遮断します。制御系は生きているので ORG 検出でシステムの復帰が可能です。更にエンコーダを付加することでシステム側で座標を管理できます。但し駆動系のモータが電源遮断によって落下や慣性で動き続けることがないように、ブレーキ等の対策が必要です。また、ドライバ励磁相を初期化する唯一の手段でもあります。
2	RESET 信号入力	CAD-5410-AL770 に用意してある I/O コネクタ部で強制的に初期化する方法です。RESET 回路は純ハード的に構成しており信頼性が高い停止機能ですが接続回路に異常が発生した場合は停止しない可能性は皆無ではありません。又、RESET 入力で CAD-5410-AL770 上の ADDRESS 管理は失われますので装置を復帰させる場合は ORG 検出から行う必要があります。尚、シリアル通信系と同じ配線距離は保証されていませんので、装置の配置設計に注意が必要です。また、ドライバ励磁相は初期化されませんのでご注意下さい。
3	FSSTOP 入力 (B 接点入力)	CAD-5410-AL770 に用意している I/O コネクタ部で強制的に PULSE 出力を停止させる方法です。 FSSTOP 信号は CAD-5410-AL770 内部の PULSE 出力制御回路に直接接続しており、信頼性が高い停止機能ですが、接続回路に異常が発生した場合は停止しない可能性は皆無ではありません。 FSSTOP 信号入力は CAD-5410-AL770 の ADDRESS DATA 上は管理されていますが、モータが慣性等で位置ずれを起こしている場合があるので、ORG検出から復帰動作を行う必要があります。 尚、配線距離については RESET 信号と同等です。
4	CWLM/CCWLM 信号入力 (B接点入力)	装置に配置されるワークの両端の LIMIT センサを検出して PULSE 出力を 強制的に停止させる機能で、動作は下記になります。 ・LIMIT 進入時 :PULSE 出力を停止します。 ・LIMIT 進入方向への PULSE 出力 :PULSE 出力しません。 ・LIMIT 進入逆方向への PULSE 出力 :PULSE 出力します。 (LIMIT から抜けだし可能)
5	FAST(SLOW) STOP COMMAND (シリアル回線)	シリアル回線から動作を停止させる停止機能です。 危険回避を目的とした緊急停止的な応用は避けて下さい。 また、ドライバ励磁相は初期化されませんのでご注意下さい。

2. 概要

CAD-5410-AL770 は、AL シリーズ(弊社オリジナル ステッピング/サーボ モータ コントロールシステム)に接続可能なステッピングモータ用コントローラドライバのスレーブです。

3. 基本構成

3-1.機能ブロック図

3-2.各ブロック説明

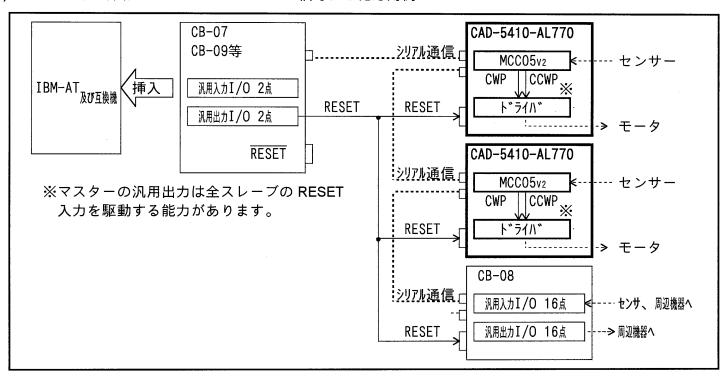
- (1)シリアル通信·インターフェイス部 シリアル通信インターフェイス ブロックです。
- (2)シリアル通信 コントロール部 シリアル通信インターフェイスを制御します。
- (3)DRIVE コントロール部 MOTOR 制御用のシリアルパルスを出力します。

(4)COUNTER 部

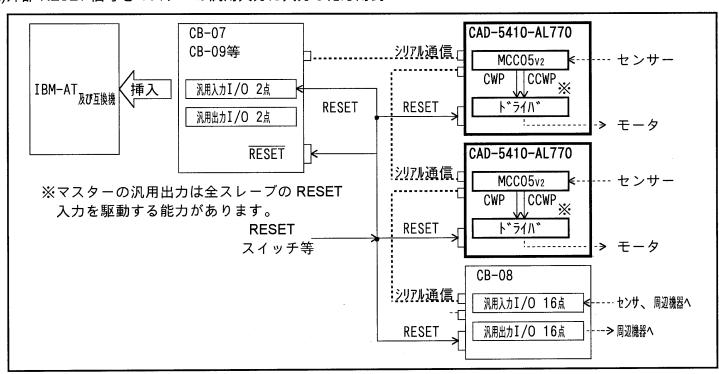
COUNTER 部は、ADDRESS COUNTER/汎用 PULSE COUNTER の 2 種の 24BIT UP/DOWN COUNTER により構成されています。

ADDRESS COUNTER、汎用 COUNTER は MCC05 v_2 が出力する PULSE をカウントすることができます。機能としては、カウント値の常時読み出し、プリセット、任意のカウント値の検出等があります。

(5)5 相ステッピングモータドライバ部


AC100V/115V 入力で 0.75A/相 \sim 1.4A/相までの 5 相ステッピングモータが駆動できます。 基本角の 1/1 分割 \sim 1/160 分割の 10 種のステップ角が選択できます。 HOLD 電流と DRIVE 電流が設定できます。 モータの高速トルクが選択できます。

(6)ユーザ・インターフェイス部


STEPPING MOTOR DRIVER,センサ等の信号のインターフェイス部です。

3-3.システム構成例

(1)マスターの汎用出力をスレーブへの RESET 信号にした応用例

(2)外部 RESET 信号をマスターの汎用入力に入力した応用例

※ CWP は+(CW)方向正論理 PULSE 出力です(内部信号)。 CCWP は -(CCW)方向負論理 PULSE 出力です(内部信号)。

4. 仕様

4-1.AL シリーズ仕様

(1)準拠規格 RS485(DC+24V 電源と絶縁)

(2)通信方式 2 線式半二重

(3)同期方式 非同期(調歩同期式)

(4)スレーブ接続局数 1 ~ 15 スレーブ(アドレス設定範囲は 01 н~ 1F н)

(5)最大配線距離 20m

(6)ボーレート 9765bps/39062bps/156250bps/625000bps

(7)データビット(8)パリティビット偶数

(9)ストップビット 1ビット

(10)通信エラーチェック機能 パリティチェック、サムチェック

4-2.基本機能

(1)DRIVE 機能

JOG 1PULSE DRIVE

INDEX ……… 指定 PULSE 数、又は指定 ADDRESS までの位置決め DRIVE

ORIGIN ……… 機械原点検出までの一連の DRIVE(9 種の検出型式)

S-RATE SCAN ······ SCAN と同様であるが、加減速形状が S 字型の DRIVE

S-RATE INDEX ······ INDEX と同様であるが、加減速形状が S 字型の DRIVE

*本 MANUAL 中"SCAN DRIVE","INDEX DRIVE"と表記されている場合、S-RATE SCAN/INDEX DRIVE は含みません。

(2)DRIVE PULSE 数

INDEX,S-RATE INDEX ········ 0~ 8,388,607 PULSE/DRIVE(相対指定時)

0~16,777,214 PULSE/DRIVE(絶対指定時)

(3)SPEED/RATE 範囲

SPEED 範囲 ………… 1Hz ~ 500kHz (注)500kHz 以上の動作は保証されません。

RATE 範囲 1030ms/1000Hz ~ 0.004ms/1000Hz

(4)SPEED DATA Hz 単位設定機能

出力 PULSE の SPEED を 1 \sim 500,000 の Hz 単位で設定する事が可能です。

(5)加速/減速時定数(RATE)個別設定機能

加速時の時定数、減速時の時定数を個別に設定する事が可能です。

(但し、S-RATE SCAN,S-RATE INDEX は応用機能になります)

(6)DRIVE SPEED 変更機能

SCAN DRIVE 又は INDEX DRIVE 中に SPEED を自由に変更する事が可能です。

(但し INDEX DRIVE の加速/減速時定数(RATE)個別設定時は除く)

(7)ADDRESS COUNT 機能

ADDRESS COUNTER により MCC05v2 出力 PULSE の絶対 ADDRESS を COUNT でき、COUNT DATA を常時 読み出す事が可能です。

(8)PULSE COUNT 機能

PULSE COUNTER により出力 PULSE を COUNT 出来、COUNT DATA を常時読み出す事が可能です。PULSE COUNTER には、5 個の COMPARE REGISTER が接続されており、これにより任意の COUNT 値を検出する事が可能です。

(9)LIMIT STOP 即時/減速停止対応機能

LIMIT 信号による停止の型式には、即時/減速の2種類があり、USER PROGRAM により指定可能です。

(10)LIMIT SENSOR 兼用 ORIGIN DRIVE 機能

LIMIT SENSOR を使用した ORIGIN DRIVE が可能です。

(11)現在 SPEED 読み出し機能

DRIVE 中に現在 SPEED を読み出す事が可能です。

(12)設定 DATA 読み出し機能

HSPD,LSPD,RATE,SPEC INITIALIZE 等の USER PROGRAM により設定された DATA を読み出す事が可能です。

(13)DRIVE/HOLD 電流自動切替機能

ドライブパルス入力によりモータへの出力電流が HOLD 電流から DRIVE 電流に自動的に切り替わります。

(14)モータ励磁停止入力(M.F)機能

制御信号リクエストで M.F を ON にすることにより、モータ出力電流を遮断する事が可能です。 この時のモータトルクはディテントトルクになります。

(15)ステップ角切替入力(C.S)機能

制御信号リクエストで C.S を ON にすることにより、ステップ角を 1/20 分割に切り替えます。 ステップ角切替スイッチの設定は無視されます。

C.S 信号でステップ角を切り替えても位置はずれません。

(16)過熱警告信号出力(O.H.A)機能

内部温度が約65°C以上になった時、信号を出力(温度センサの接点がON)します。 この時、モータ出力電流は遮断されません。

4-3.定格

(1)電源電圧:AC100V(50/60Hz) または 単相 AC115V(60Hz)(ドライバ駆動用)

DRIVE 時定格電力 210VA[POWER SEL ⇒ HP.H 設定時] HOLD 時定格電力 30VA[HOLD I.ADJ ⇒ 40%設定時]

DC+24V 0.2A MAX(コントローラ・通信電源用)

(2)周囲温度:0℃~+40℃

(3)周囲湿度:+80%RH以下 (非結露)

(4)モータ出力電流: DRIVE 電流 0.17A/相~ 0.68A/相

HOLD 電流 DRIVE 電流設定値の 0 ~ 100%

MOTOR SEL スイッチ[5L]設定時

DRIVE 電流 0.34A/相~ 1.35A/相

|MOTOR SEL スイッチ[10L]設定時 HOLD 電流 DRIVE 電流設定値の 0 ~ 100%

(5)雰囲気:屋内(直射日光が当たらないこと)、腐食性ガス・引火性ガス・オイルミスト・塵埃のないこと。

(6)耐振動:10~55Hz,0.15mmP-Pにて異常のないこと。

(7)絶縁耐圧、絶縁抵抗(常温·常湿):

AC 端子-信号端子 AC1500V 1 分間、DC500V 100M Ω 以上。 AC1500V 1 分間、DC500V 100M Ω以上。 AC 端子-④端子

(8)質量:0.85kg

4-4.オプション

ALシリーズにはオプションが用意されています。 オプションについては別途お問い合わせ下さい。

4-5.応用機能

CAD-5410-AL770 には、4-2.で示した基本機能の他に、より多様な USER 仕様に応える為の様々な応用機能が 用意されています。これら応用機能に関する詳細は取扱説明書〔応用機能編〕を参照下さい。

(1)応用 DRIVE 機能

SPECIAL SCAN SCAN と同様であるが、DRIVE 中、速度の加減速が可能な DRIVE

SPECIAL INDEX INDEX と同様であるが、DRIVE 中、速度の加減速が可能な DRIVE

SERIAL INDEX ……… 予め設定した DRIVE パターンを停止せずに連続して行う DRIVE

SPECIAL SERIAL INDEX …… 各区間毎に RATE を設定することが可能な SERIAL INDEX DRIVE

SENSOR INDEX INDEX DRIVE と SENSOR 入力検出を組み合わせて位置決めする DRIVE

SENSOR SCAN ………… SCAN DRIVE と SENSOR 入力検出を組み合わせて位置決めする DRIVE

*本 MANUAL 中"SCAN DRIVE","INDEX DRIVE"と表記されている場合、上記の応用 DRIVE は含みません。

(2)DRIVE 中の INDEX 変更機能

INDEX DRIVE 中に指定 PULSE 数又は、指定 ADDRESS を変更する事が可能です。

(3)DRIVE 中の RATE 変更機能

SCAN DRIVE 中に加減速時定数を変更する事が可能です。

(4)加減速時定数パラメータ設定機能

パラメータにより加減速時の時定数を任意の値に設定する事が可能です。

(5)SPEED DATA 設定方法切り替え機能

出力 PULSE の SPEED 設定は、通常 Hz 単位で設定を行う Hz 設定 MODE となっていますが、これを基準クロックの整数倍で指定する基準クロック倍数設定 MODE に切り替える事が可能です。

(6)第1出力 PULSE の PULSE 幅選択機能

DRIVE START 後の 1 発目の ACTIVE PULSE 幅を自起動周波数の半周期,100 μ s 固定,20 μ s 固定のいずれかより選択する事が可能です。

(7)三角駆動防止機能

S-RATE INDEX DRIVE において、PULSE 数が少ない為に HIGH SPEED まで達せずに減速を開始してしまう様な三角駆動を回避する為、予め頂点の定速 PULSE 数を指定しておき一定速で動作する領域を確保する事が可能です。

(8)END PULSE DRIVE 機能

INDEX DRIVE,S-RATE INDEX DRIVE において、DRIVE 終了時のダンピングを軽減する為、LOW SPEED までの減速終了後、連続して指定周波数、指定 PULSE 数による DRIVE を行う事が可能です。

(9)ORIGIN DRIVE 方向切り替え機能

ORIGIN DRIVE は、通常 ORG(又は NORG)信号用センサがワークに添って -(CCW)LIMIT 側に設置されている 事を前提として行いますが、ORIGIN DRIVE 方向切り替え機能により ORG(又は NORG)センサを +(CW)LIMIT 側に設置する事が可能です。

(10)MARGIN TIME 機能

ハンチング等による ORIGIN DRIVE の誤動作を防ぐ為、センサ信号検出~ PULSE 停止の間に MARGIN TIME を挿入する事が可能です。

(11)SOFT LIMIT 機能

CW,CCW SOFT LIMIT を設定する事が可能です。

(12)ORIGIN SENSOR TYPE 選択機能

ORG センサの検出をエッジからレベルに変更可能です。

(13)ORIGIN ERROR 検出機能

CONSTANT SCAN DRIVE 工程と JOG DRIVE 工程で出力する最大 PULSE を予め設定し、その PULSE 数内でセンサが検出出来ない場合は、STATUS1 PORT の ERROR BIT を 1 として DRIVE を強制終了させる事が可能です。

(14)非対称 S-RATE DRIVE 機能

S字型 DRIVE に於いても、加速/減速時定数を個別設定可能とします。

(15)S-RATE DRIVE 三角駆動回避機能

S 字型 DRIVE に於いて出力 PULSE が少ない時、自動的に DRIVE 形状を丸め、三角駆動を回避します。 ただし、非対称 S-RATE DRIVE では無効となります。

(16)SPEED/RATE CHANGE 動作高速化

SCAN DRIVE に於いて、CHANGE COMMAND 書き込みからの動作をリアルタイムに実行します。

(17)AUTO CHANGE 機能

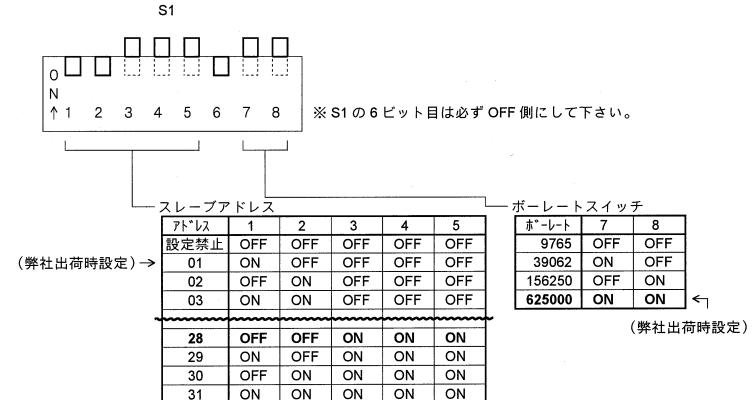
予め指定された、出力 PULSE 数、SPEED 又は時間により自動的に SPEED 又は RATE を変更します。

(18)DRIVE 計算機能

加速 PULSE 数、加速時間及び INDEX DRIVE の DRIVE 時間をシュミレーション計算で求める事が可能です。

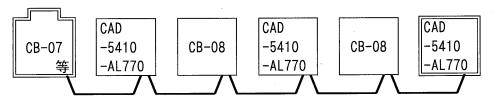
5. 設定

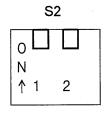
5-1.AL シリーズ上のアドレス設定**(S1)**


AL シリーズ上のスレーブアドレスを基板上のディップスイッチ(S1)1 ~ 5 の 5BIT により設定します。マスターの専用アドレス 00 n及び他のスレーブアドレスに重複しない様にスレーブ毎に設定して下さい。

5-2.AL シリーズ通信速度設定(S1)

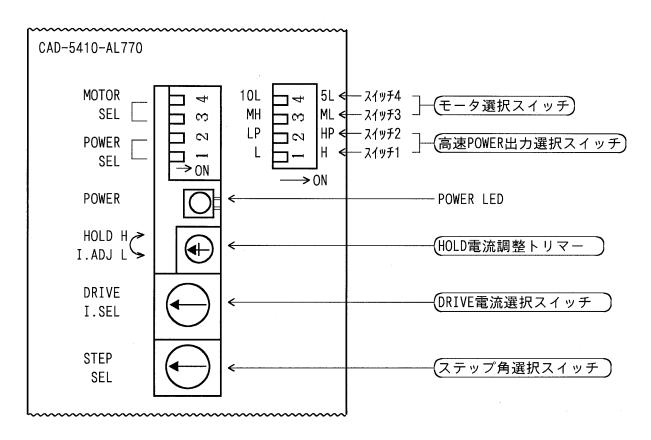
AL シリーズの通信速度(ボーレート)を基板上のディップスイッチ(S1)7,8 の 2BIT で設定します。 マスターに初期化コマンドで設定する通信速度と同じ通信速度を AL シリーズに接続する全てのスレーブに対して設定して下さい。


例)次に示す例はスレーブアドレス=28、ボーレート=625000bps に設定した時のものです。


S1 の設定はリセット、又は DC 電源投入時に有効になりますので設定変更後は必ずリセットを入れて下さい。 この時、必ずマスターの初期化も同時に行って下さい。

5-3.終端抵抗の設定(S2)

基板上のディップスイッチ S2 により AL シリーズネットワーク上の終端抵抗の有無を設定します。 終端抵抗はネットの両端に位置するスレーブ又はマスターのみ有りにして下さい。(下図の □□)



──^{───}終端抵抗スイッチ <u>※ S2 の一方の BIT だけを ON にした状態で DC 電源を入れないで下さい</u> 1,2 とも ON :抵抗有り

1,2 とも OFF:抵抗無し (弊社出荷時設定)

5-4.ドライバ設定部

操作部の名称	働き	出荷時設定
モータ選択スイッチ	適用モータを選択します。	(MH·5L)
高速POWER出力選択スイッチ	モータの高速トルクを選択します。	(HP·H)
HOLD電流調整トリマー	HOLD電流を調整します。	(40%)
DRIVE電流選択スイッチ	DRIVE電流を選択します。	(No.F)
ステップ角選択スイッチ	ステップ角を選択します。	(No.6)

5-5.POWER LED

AC 電源を入力すると POWER LED が点灯します。

AC電源を切ったあとに内部の電圧が40V以下になるとPOWER LEDは消灯します。

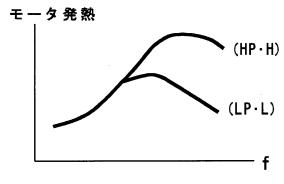
5-6.モータ選択スイッチの設定

⚠ 注意

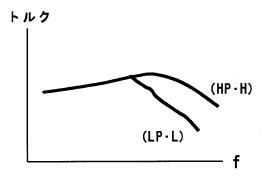
設定をあやまると、モータの過熱により、やけどをまねくおそれがあります。 正しく設定して下さい。

MOTOR SEL スイッチを使用モータに対応する設定にします。 このスイッチの設定は AC 電源 OFF 時に設定します。 出荷時は $[MH\cdot 5L]$ に設定しています。

(1)AC 電源を[OFF]にします。


(2)S3-3(MH/ML)、S3-4(10L/5L)を「24-5.適用モータ」の表に示す設定にします。

5-7.高速 POWER 出力選択スイッチの設定


POWER SEL スイッチで高速トルクの出力を選択します。 4種類の高速トルクが選択できます。 出荷時は〔HP·H〕に設定しています。

(1)S3-1 (L/H)、S3-2 (LP/HP)を必要な高速トルクに設定します。

●スイッチ設定とモータ発熱・高速トルクの関係

発熱モデル

トルクモデル

- ●高速トルクを必要とする場合はスイッチ (HP·H)を選択し、高速トルクが不要な場合はモータ発熱を抑えるために、スイッチ (HP·L) ~ (LP·L) を選択します。
- ●このスイッチの選択により CAD-5410-AL770 の消費電力は次のようになります。

スイッチ設定	HP·H	HP·L	LP·H	LP·L
消費電力 (DRIVE I.SEL No.F 設定時)	210VA	170VA	140VA	110VA

(出荷時)

5-8.DRIVE 電流選択スイッチの設定

⚠ 注意

設定をあやまると、モータの過熱により、やけどをまねくおそれがあります。 正しく設定して下さい。

DRIVE I.SEL スイッチで DRIVE 電流を設定します。 出荷時は[No.F]に設定しています。

(1)スイッチ No.を「24-5.適用モータ」の表に示す設定にします。

● DRIVE I.SEL スイッチ No.と DRIVE 電流の関係

MOTOR SEL	スイッチ			
〔5L〕設定時				
スイッチNo.	A/相			
0	0.17			
1	0.20			
2	0.24			
	0.27			
4	0.31			
5	0.34			
6	0.37			
7	0.41			
8	0.44			
9	0.48			
Α	0.51			
B C	0.54			
С	0.58			
D	0.61			
E	0.64			
F	0.68			

(出荷時)

MOTOR SE	ELスイッチ
〔10L〕設	定時
スイッチNo.	A/相
0	0.34
1	0.40
2	0.47
	0.54
4	0.61
5	0.67
6	0.74
7	0.81
8	0.88
9	0.95
Α	1.01
B C	1.08
	1.15
D	1.21
E	1.28
F	1.35

(出荷時)

5-9.ステップ角選択スイッチの設定

⚠ 注意

設定をあやまると、モータの予期せぬ回転により、機械の破損、けがをまねくおそれが あります。

正しく設定して下さい。

STEP SEL スイッチでステップ角を設定します。 10種のステップ角が選択できます。 このスイッチの設定は AC 電源 OFF 時に設定します。 出荷時は[No.6]に設定しています。

(1)AC 電源を[OFF]にします。

(2)スイッチ No.を必要なステップ角に設定します。

● STEP SEL スイッチ No.とステップ角の関係

スイッチNo.	47. 中川米47	ステップ	角(°)
AT THO.	分割数	0.72° t-9	0.36° ₹-タ
0	1/1	0.72	0.36
1	1/2	0.36	0.18
2	1/4	0.18	0.09
3	1/8	0.09	0.045
4	1/10	0.072	0.036
5	1/16	0.045	0.0225
6	1/20	0.036	0.018
7	1/40	0.018	0.009
8	1/80	0.009	0.0045
9	1/160	0.0045	0.00225

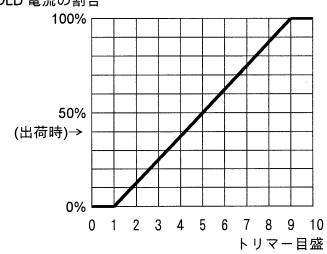
(出荷時)

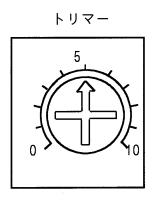
● STEP SEL スイッチと C.S 信号を組み合わせて 2 種のステップ駆動ができます。

5-10.HOLD 電流調整トリマーの設定

⚠ 注意

設定を高くすると、モータの加熱によりやけどをまねくおそれがあります。 必要以上に設定を高くしないで下さい。


HOLD I.ADJ トリマーで HOLD 電流を設定します。 DRIVE 電流に対する HOLD 電流の割合が設定されます。 $0 \sim 100\%$ までの調整ができます。 出荷時は 40%に設定しています。


- (1)トリマーの目盛を必要な値に設定します。
- ●トリマー目盛と HOLD 電流の割合

HOLD 電流の割合(%)=

HOLD 電流 DRIVE 電流 × 100

HOLD 電流の割合

- HOLD 電流は DRIVE 電流の設定値に連動して変化します。 HOLD 電流の割合 100%は DRIVE 電流の設定値と同じになります。
- HOLD 電流の割合を高くすると、停止時のモータ発熱が高くなります。

6. ポート説明

CAD-5410-AL770 には、MCC05v2 が実装されており、次に示すポートがあります。

6-1.I/O PORT 表

PORT 名称				
	DRIVE COMMAND PORT			
	DRIVE DATA1 PORT	書		
	DRIVE DATA2 PORT	き		
	DRIVE DATA3 PORT] c		
	COUNTER COMMAND PORT	込		
	COUNTER DATA1 PORT	み		
MCC05	COUNTER DATA2 PORT	05		
V2	COUNTER DATA3 PORT			
	STATUS1 PORT			
	STATUS2 PORT	読		
	STATUS3 PORT	み		
	STATUS4 PORT	05		
	STATUS5 PORT	出		
	DRIVE DATA1 PORT	١.		
	DRIVE DATA2 PORT			
	DRIVE DATA3 PORT			

6-2.DRIVE COMMAND PORT

DRIVE COMMAND を書き込む PORT です。 COMMAND の詳細は7.を参照下さい。

6-3.DRIVE DATA1,2,3 PORT(WRITE)

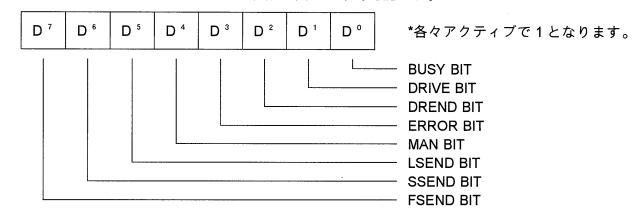
各 DRIVE COMMAND により各種 DATA を書き込みます。

6-4.DRIVE DATA1,2,3 PORT(READ)

各種 DATA の読み出しを行います。

ADDRESS READ COMMAND,SET DATA READ,ERROR STATUS READ による DATA の読み出しは、COMMAND WRITE後、STATUS1内 BUSY BIT=0を確認して行います。 PULSE COUNTER 又は、ADDRESS COUNTER の COUNT DATA の読み出しは常時可能です。

6-5.COUNTER COMMAND PORT


PULSE COUNTER の PRESET、COMPARE REGISTER の SET COMMAND を書き込む PORT です。 COMMAND の詳細は12.を参照下さい。

6-6.COUNTER DATA1,2,3 PORT(WRITE)

COUNTER COMMAND による数値 DATA を書き込みます。

6-7.STATUS1 PORT

MCC05v2の現在の状態を読み出す PORT です。読み出しは常時可能です。

BUSY BIT :

: 0 で COMMAND の書き込みが可能である事を示します。

1の時は、DRIVE 中か DATA 処理中であり、COMMAND を無視します。 COMMAND は BUSY BIT=0 を確認してから書き込まねばなりません。

但し、特殊 COMMAND(7-2.参照)については、BUSY BIT=1 でも書き込み可能です。

DRIVE BIT

1で DRIVE 中である事を示します。

DREND BIT

1 で DRIVE が終了した事を示します。(注 1,3)

次の COMMAND 書き込みにより RESET されます。

FRROR BIT :

書き込まれた COMMAND 又は DATA に何等かの ERROR があった事を示します。(注 1,3)

BUSY=0の時のみ、意味を持ちます。

ERROR の内容については、ERROR STATUS READ COMMAND により確認可能です。

次の COMMAND 書き込みにより RESET されます。

MAN BIT

本製品では、当 BIT は未使用です。0 が出力されます。(注 3)

LSEND BIT

DRIVE BIT=1 の時、有効な CWLM 信号、又は CCWLM 信号が入力された事を示し、

DRIVE BIT=0 の時、PULSE 出力が CWLM 信号、又は CCWLM 信号により停止した事を

示します。(応用機能である SOFT LIMIT で停止した場合も含みます。)

次の DRIVE 開始時に RESET されます。(注 2)

SSEND BIT

DRIVE BIT=1 の時、SLOW STOP COMMAND が入力された事を示します。

DRIVE BIT=0 の時、PULSE 出力が SLOW STOP COMMAND により停止した事を示します。

次の DRIVE 開始時に RESET されます。(注 2)

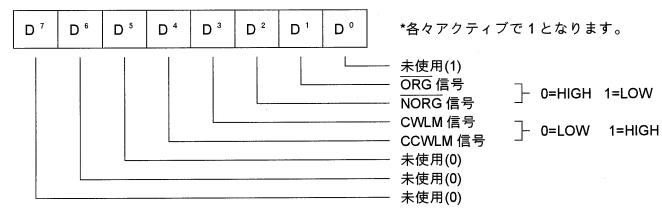
FSEND BIT :

DRIVE BIT=1 の時、FSSTOP 信号、又は FAST STOP COMMAND が入力された事を示しま

す。DRIVE BIT=0 の時、PULSE 出力が FSSTOP 信号、又は FAST STOP COMMAND に

より停止した事を示します。

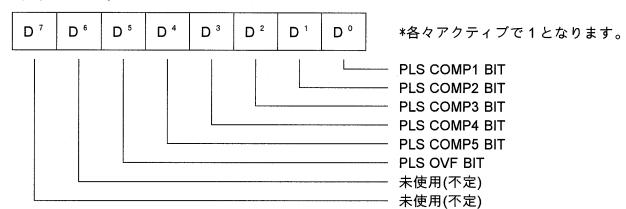
次の DRIVE 開始時に RESET されます。(注 2)


(注 1)BUSY=0 の時のみ、意味を持ちます。

(注 2) DRIVE 信号の立ち上がりで RESET されます。DRIVE を伴わない COMMAND では RESET されません。

(注 3)POWER ON 時及び RESET 信号入力時は、DREND,ERROR,MAN の各 BIT は値が不定となります。 従ってこの時は、BUSY BIT=0 のみ確認し NOP COMMAND を実行し DREND,ERROR,MAN の各 BIT を イニシャライズして下さい。

6-8.STATUS2 PORT


入力信号の状態を読み出す PORT です。読み出しは常時可能です。

(注)当 STATUS は、リアルタイム DATA となっています。

6-9.STATUS3 PORT

PULSE COUNTER からの STATUS 情報を読み出す PORT です。 読み出しは常時可能です。

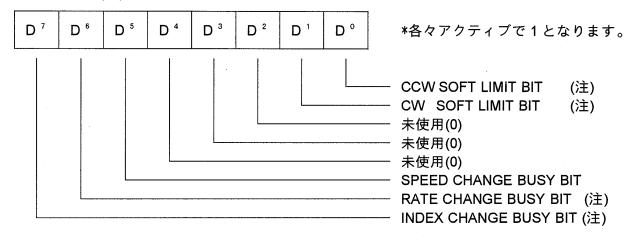
PLS * COMP1 BIT : PULSE COUNTER と COMPARE REGISTER1 が一致した事を示します。 (注) PLS COMP2 BIT : PULSE COUNTER と COMPARE REGISTER2 が一致した事を示します。 (注) PLS COMP3 BIT : PULSE COUNTER と COMPARE REGISTER3 が一致した事を示します。 (注) PLS COMP4 BIT : PULSE COUNTER と COMPARE REGISTER4 が一致した事を示します。 (注) PLS COMP5 BIT : PULSE COUNTER と COMPARE REGISTER5 が一致した事を示します。 (注)

PLS OVF BIT : PULSE COUNTER がオーバフローした事を示します。

(注)初期状態では、COUNTER 一致中以外の場合、当 STATUS READ 後 RESET されます。 各 COUNTER INITIALIZE COMMAND により当 STATUS READ 後必ず RESET されるモードを選択 出来ます。

*本 MANUALでは、"PLS"は PULSE を示す略語として使用しています。以降も同様です。

6-10.STATUS4 PORT


入出力信号の現在の状態を読み出す PORT です。読み出しは常時可能です。

(注 1)SENSOR 入力信号については、取扱説明書〔応用機能編〕を参照下さい。 (注 2)当 STATUS は、全て入出力端子のリアルタイム DATA となっています。

6-11.STATUS5 PORT

応用機能の SOFT LIMIT(注)及び SPEED CHANGE の状態等を読み出す PORT です。読み出しは常時可能です。

(注) 詳細は、取扱説明書〔応用機能編〕を参照下さい。

CCW SOFT LIMIT BIT

: CCW SOFT LIMIT 要因が発生した事を示します。

CW SOFT LIMIT BIT

: CW SOFT LIMIT 要因が発生した事を示します。

RATE CHANGE BUSY BIT

SPEED CHANGE BUSY BIT : SPEED CHANGE 処理中である事を示します。 : RATE CHANGE 処理中である事を示します。

INDEX CHANGE BUSY BIT : INDEX CHANGE 処理中である事を示します。

7. 基本機能 DRIVE COMMAND 説明及び動作シーケンス

各 COMMAND の実行は、PORT(6-1.参照)に対して行って下さい。

書き込みリクエスト(COMMAND)の実行時間は、REQUEST PORT(マスター)にリクエストの最後のバイトが書き込まれてからコマンドが実行される(MCC05 v_2 の RDY が OFF になる)までの時間を表し、通信速度が625000bps 時の値です。

他の通信速度設定の時には 13-1.シリアル通信時間を参照して下さい。

7-1.基本機能 DRIVE COMMAND の COMMAND 表

[通信速度 625000bps 時]

	D ⁷ D ⁶ D ⁵ D ⁴ D ³ D ² D ¹ D ⁰	HEX CODE	COMMAND NAME	実行時間(ms)
	00000000	0.0	NO OPERATION	0.32
	0 0 0 0 0 0 0 1	0 1	SPEC INITIALIZE1	1.50 (注 1)
	0 0 0 0 0 0 1 0	0 2	PULSE COUNTER INITIALIZE	0.33
	0 0 0 0 0 0 1 1	03	ADDRESS INITIALIZE	0.33
	0 0 0 0 0 1 0 0	0 4	ADDRESS READ	0.33
	0 0 0 0 0 1 0 1	0.5	設定禁止	
	0 0 0 0 0 1 1 0	0.6	RATE SET	0.36 (注 1)
	0 0 0 0 0 1 1 1	0.7	LSPD SET	0.40 (注 1)
	0 0 0 0 1 0 0 0	0.8	HSPD SET	0.39
	0 0 0 0 1 0 0 1	0.9	設定禁止	
	0 0 0 0 1 0 1 0	0 A	SET DATA READ	0.34
		0 B~0 F	設定禁止	(注 3)
*	0 0 0 1 0 0 0 0	1 0	+JOG	(注 2)
*	0 0 0 1 0 0 0 1	1 1	-JOG	(注 2)
*	0 0 0 1 0 0 1 0	1 2	+SCAN	(注 2)
*	0 0 0 1 0 0 1 1	1 3	-SCAN	(注 2)
*	00010100	1 4	INCREMENTAL INDEX	(注 2)
*	0 0 0 1 0 1 0 1	1 5	ABSOLUTE INDEX	(注 2)
		16~17	設定禁止	
		18~19	設定禁止	(注 3)
	00011010	1 A	CSPD SET	0.36
	00011011	1 B	OFFSET PULSE SET	0.32
	00011100	1 C	ORIGIN DELAY SET	0.33
	0 0 0 1 1 1 0 1	1 D	ORIGIN FLAG RESET	0.32
*	0 0 0 1 1 1 1 0	1 E	ORIGIN	(注 2)
	0 0 0 1 1 1 1 1	1 F	設定禁止	
		20~5F	設定禁止	(注 3)
	0 1 1 0 0 0 0 0	6 0	SRATE SET	0.45
	0 1 1 0 0 0 0 1	6 1	SLSPD SET	0.45
	01100010	6 2	SHSPD SET	0.45
	01100011	6 3	SSRATE ADJUST	0.40
	01100100	6 4	SERATE ADJUST	0.40
	01100101	6 5	SCSPD1 ADJUST	0.40
	01100110 66		SCSPD2 ADJUST	0.40
		67~6F	設定禁止	
*	01110000	7 0	+ S-RATE SCAN	(注 2)
*	01110001	7 1	- S-RATE SCAN	(注 2)
*	01110010	7 2	S-RATE INCREMENTAL INDEX	(注 2)
*	01110011	7 3	S-RATE ABSOLUTE INDEX	(注 2)
		74~E1	設定禁止	
	11100010	E 2	ERROR STATUS READ	0.33
		E3~F1	設定禁止	
		F 2~F6	設定禁止	(注 3)

^{*}は PULSE 出力を伴う COMMAND です。 (注 1)(注 2)(注 3)の説明は次頁に記載

(注 1) URATE ≠ DRATE 設定時は、これらの COMMAND の実行時間は DRIVE TYPE により次の値になります。

	実行時間(ms)	
L-TYPE	MAX 100	
M-TYPE	MAX 35	
H-TYPE	MAX 15	

- (注 2) 実行時間は規定できません。 14. のタイミングを参照下さい。
- (注 3) 応用機能 DRIVE COMMAND が割り当てられています。

詳細は取扱説明書〔応用機能編〕を参照下さい。

この時、応用機能編の実行時間にはシリアル通信時間が含まれていないため、書き込み時 0.3 ms、読み出し時 0.6 ms(625000bps 時)の時間を加えて下さい。

他設定の時には14-1.シリアル通信時間を参照して下さい。

7-2.特殊 COMMAND の COMMAND 表

特殊 COMMAND は常時実行する事が可能です。

[通信速度 625000bps 時]

$D^7D^6D^5D^4D^3D^2D^1D^0$	HEX CODE	COMMAND NAME	実行時間(ms)
11110111	F 7	SPEED CHANGE	(注)
11111000	F 8	INT MASK	0.30
11111001	F 9	ADDRESS COUNTER PORT SELECT	0.30
11111010	FΑ	設定禁止	
11111100	FC	PULSE COUNTER PORT SELECT	0.30
1 1 1 1 1 1 0 1	FD	SPEED PORT SELECT	0.30
11111110	FE	SLOW STOP	(注)
1111111	FF	FAST STOP	(注)

(注)実行時間は規定できません。14.のタイミングを参照下さい。

7-3.NO OPERATION COMMAND

COMMAND ······ 00_H

機能: 機能はありません。

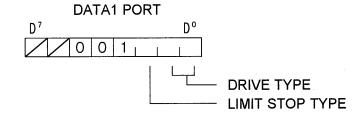
ただし、DREND BIT 及び ERROR BIT がクリアされます。

実行シーケンス
N STATUS内 BUSY=0?
Y COMMAND 00+ WRITE

7-4.SPEC INITIALIZE1 COMMAND

COMMAND ······ 01_H

機能: 動作仕様を定義します。


実行シーケンス
N STATUS内
BUSY=0?

Y DATA1 PORT
WRITE

COMMAND 01H
WRITE

DRIVE DATA1 PORT に DRIVE CONTROL 仕様を定義します。

DRIVE DATA1 PORT の内容は以下の通りです。

/部は 0/1 どちらでも良い。

- (注) D³BITは、必ず1にして下さい。
- (注) D⁴、D⁵BIT は、必ず0にして下さい。

各 BIT の詳細を以降に示します。尚、RESET 時の設定はアンダーライン側となります。

(1)DRIVE TYPE (D 1 ,D 0)

DRIVE TYPE の指定を行う BIT です。

D ¹	D°	DRIVE TYPE
0	0	L-TYPE
0	1	M-TYPE
1	0	H-TYPE
1	1	演算 MODE(注)

(注)演算 MODE については、取扱説明書〔応用機能編〕 を参照下さい。

(2)LIMIT STOP TYPE (D ²)

CWLM,CCWLM 信号による LIMIT 停止の形式を指定する BIT です。

0:即時停止

1:減速停止

7-5.PULSE COUNTER INITIALIZE COMMAND

COMMAND 02_H 機能: PULSE COUNTER の動作仕様を定義します。 実行シーケンス DRIVE DATA1,2,3 PORT に PULSE COUNT 仕様を定義します。 STATUS内 DRIVE DATA1 PORT の内容は以下の通りです。 BUSY=0? **DATA1 PORT** D^7 D^{o} DATA1 PORT 0,0,0,00, 順 WRITE 不 同 **COMP STOP TYPE** DATA2 PORT で STATUS OUTPUT TYPE 良 WRITE STATUS LATCH TRIGGER TYPE い DATA3 PORT WRITE (注) D⁷~ D³ BIT は、必ず 0 にして下さい。 COMMAND 02_H WRITE

DRIVE DATA1 PORT の各 BIT の詳細を以降に示します。尚、RESET 時の設定はアンダーライン側となります。

(1)COMP STOP TYPE (D °)

PULSE COUNTER の COMP STOP ENABLE において「停止させる」が選択されている場合、即時停止か減速停止かの選択を行う BIT です。

(COMPARE REGISTER1 ~ 5 共、同仕様になります。)

<u>0:即時停止</u>

1:減速停止

(2) STATUS OUTPUT TYPE (D 1)

PULSE COUNTER において STATUS 出力仕様の選択を行う BIT です。

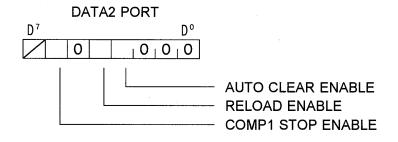
(COMPARE REGISTER1 \sim 5 共、同仕様になります。)

<u>0:各 COMPARATOR の検出状態をラッチして出力</u> (ラッチの解除は、STATUS3 READ によります。) 1:各 COMPARATOR の検出状態をそのままスルーして出力

(注)1 を選択しますと COMPARATOR の検出状態をそのまま出力する為、STATUS3 READ による解除は、 行えません。

(3)STATUS LATCH TRIGGER TYPE (D 2)

PULSE COUNTER において STATUS 出力仕様がラッチの場合、ラッチの種類を選択する BIT です。 (COMPARE REGISTER1 ~ 5 共、同仕様になります。)


0:レベルラッチ

1:エッジラッチ

(検出条件が成立している間でも、STATUS3 READ を行う事により STATUS 出力を RESET します。)

(注)STATUS 出力仕様がスルーの場合、当 BIT の影響は、ありません。

DRIVE DATA2 PORT の内容は以下の通りです。

/部は 0/1 どちらでも良い。

(注) 2°、2¹、2²、2⁵ BIT は、必ず 0 として下さい。

DRIVE DATA2 PORT の各 BIT の詳細を以降に示します。尚、RESET 時の設定はアンダーライン側となります。

(4)AUTO CLEAR ENABLE (D 3)

オートクリア機能の設定を行う BIT です。

0:オートクリアを行わない

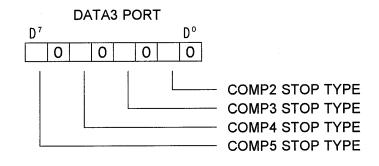
1:オートクリアを行う

(5)RELOAD ENABLE (D ⁴)

リロード機能の設定を行う BIT です。

0:リロードを行わない

1:リロードを行う


(6)COMP1 STOP TYPE (D ⁶)

COMPARE REGISTER1 の検出出力により、PULSE 出力を停止させるかさせないかを選択する BIT です。

0:停止させない

1:停止させる

DRIVE DATA3 PORT の内容は以下の通りです。

(注) 2 °,2 ⁴,2 ²,2 ° BIT は、必ず 0 として下さい。

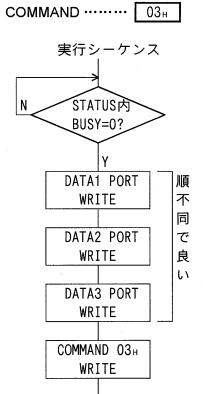
DRIVE DATA3 PORT の各 BIT の詳細を以降に示します。尚、RESET 時の設定はアンダーライン側となります。

(1)COMP2 STOP TYPE (D 1)

COMPARE REGISTER2 の検出出力により、PULSE 出力を停止させるかさせないかを選択する BIT です。
0: 停止させない 1: 停止させる

(2)COMP3 STOP TYPE (D 3)

COMPARE REGISTER3 の検出出力により、PULSE 出力を停止させるかさせないかを選択する BIT です。
0:停止させない
1:停止させる

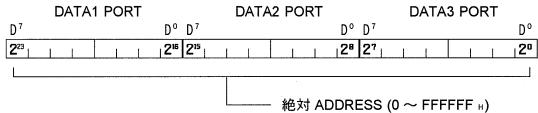

(3)COMP4 STOP TYPE (D 5)

COMPARE REGISTER4 の検出出力により、PULSE 出力を停止させるかさせないかを選択する BIT です。
0:停止させない 1:停止させる

(4)COMP5 STOP TYPE (D ⁷)

COMPARE REGISTER5 の検出出力により、PULSE 出力を停止させるかさせないかを選択する BIT です。
0: 停止させない
1: 停止させる

7-6.ADDRESS INITIALIZE COMMAND

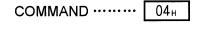


機能: 現在位置を指定された絶対 ADDRESS として、

定義・記憶し、ADDRESS COUNTER へ値を設定します。

DRIVE DATA1,2,3 PORT に ADDRESS を指定します。

DRIVE DATA1,2,3 PORT の内容は以下の通りです。



ADDRESS が負数の場合、2の補数表現とします。

· ADDRESS の設定例

/ DDI (LOO O) HX /LI/J			
ADDRESS(10進表現)	DATA1 PORT	DATA2 PORT	DATA3 PORT
+8,388,607	7F _H	FF _H	FF _H
+10	00н	00н	ОАн
±0	00н	00н	00н
-10	FF _H	FF _H	F6н
-8,388,607	80н	. 00н	01н

7-7.ADDRESS READ COMMAND

実行シーケンス

STATUS内 BUSY=0?」

DATA1 PORT

DATA2 PORT READ

DATA3 PORT

READ

READ

(注)

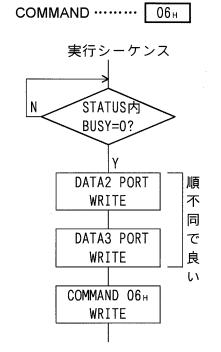
機能: MOTOR の現在位置を絶対 ADDRESS として読み出します。

DATA1,2,3 PORT の内容は以下の通りです。

DATA1,2,3 PORT より絶対 ADDRESS を読み出します。

ADDRESS が負数の場合、2の補数表現です。

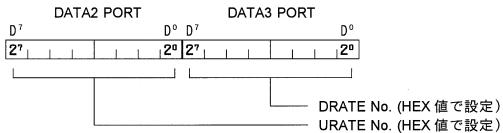
・ADDRESS の出力例


ADDRESS(10進表現)	DATA1 PORT	DATA2 PORT	DATA3 PORT
+8,388,607	7F _H	FF _H	FF _H
+10	00н	00н	0Ан
	00н	00н	00н
±0			
-10	FF _H	FF _H	
-8,388,607	80н	00н	01н

当 COMMAND は、旧製品との COMMAND 互換性の為用意してあるものです。 読み出される ADDRESS DATA は、ADDRESS COUNTER の COUNT DATA (7-37.)と何等変わりはありません。**一般的には後者を使用して下さい。**

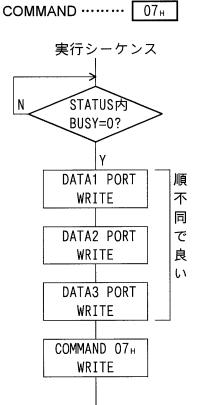
(注)DATA の READ は必ず DRIVE DATA1 ~ 3PORT の順序で行って下さい。

DRIVE DATA1,2,3 PORT は、通常、PULSE COUNTER の COUNTER 値を読み出す為の専用 PORT となっています。これらの PORT は、ADDRESS READ COMMAND を書き込む事により PORT 機能が切り替わり、当 PORT は ADDRESS DATA 読み出し用の PORT となります。ADDRESS DATA 読み出し用 PORT としての機能は DRIVE DATA3 PORT を READ する事によって解除され本来の PORT 機能に復帰します。 <u>従って、ADDRESS READ COMMAND を書き込んだ場合は必ず DRIVE DATA3 PORT の READ を行って下さい。</u>


7-8.RATE SET COMMAND

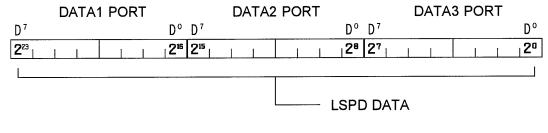
機能: 加減速 DRIVE に必要な URATE(加速時定数)、 DRATE(減速時定数)を設定します。

DRIVE DATA2 PORT に URATE、DRIVE DATA3 PORT に DRATE を DATA 表の No.で設定します。


DRIVE DATA2,3 PORT の内容は以下の通りです。

RATE SET COMMAND は 1 度実行されていれば変更の必要な場合を除き、再設定不要です。

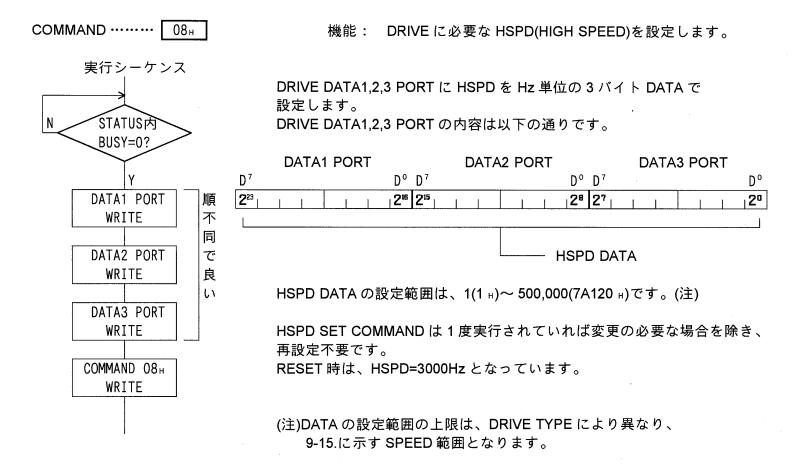
RESET 時は、URATE, DRATE 共 No.=9(100ms/1000Hz)となっています。


7-9.LSPD SET COMMAND

機能: DRIVE に必要な LSPD(LOW SPEED)を設定します。

DRIVE DATA1,2,3 PORT に LSPD を Hz 単位の 3 バイト DATA で 設定します。

DRIVE DATA1,2,3 PORT の内容は以下の通りです。


LSPD DATA の設定範囲は、10(0A н)~ 500,000(7A120 н)です。(注)

LSPD SET COMMAND は 1 度実行されていれば変更の必要な場合を除き、再設定不要です。

RESET 時は、LSPD=300Hz となっています。

(注)DATA の設定範囲の上限は、DRIVE TYPE により異なり、 9-15.に示す SPEED 範囲となります。

7-10.HSPD SET COMMAND

7-11.SET DATA READ COMMAND

COMMAND 0AH 実行シーケンス STATUS內 N BUSY=0? DATA1 PORT (注 2,3) WRITE DATA3 PORT WRITE COMMAND OAH WRITE STATUS內 BUSY=0? (注 1) DATA1 PORT READ DATA2 PORT READ DATA3 PORT READ

機能: MCC05_{1/2} に対して設定した SPEC DATA や SPEED DATA 等の読み出しを行います。

DRIVE DATA3 PORT(WRITE)に読み出しを行いたい設定 DATA の COMMAND を指定します。一部 DRIVE DATA1 PORT(WRITE) を使用します。(注 2,3)

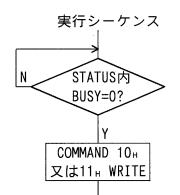
DRIVE DATA3 PORT(WRITE)の内容は以下の通りです。 DATA3 PORT

DRIVE DATA1,2,3 PORT(READ)より設定されている DATA の 読み出しを行います。

DATA の出力方法は、各々の COMMAND の DATA 設定方法と同じ型式となります例)RATE の設定 No.を確認したい場合は、DATA3 PORT に「06 н」
(RATE SET COMMAND)、COMMAND PORT に「0A н」(当 COMMAND)
を書き込み、DATA2,3 PORT を読み出します。DATA2 PORT に
URATE No.、DATA3 PORT に DRATE No.が出力されます。

当 COMMAND で確認可能な DATA は、以下の各 COMMAND で設定されたものです。DRIVE DATA3 PORT に以下の COMMAND CODE 以外が設定されていた場合、出力 DATA は保証されません。

この場合 STATUS1 PORT の ERROR BIT が 1 となります。

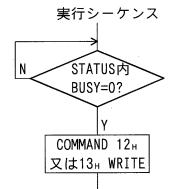

CODE	COMMAND NAME	CODE	COMMAND NAME
01 н	SPEC INITIALIZE1	27н	PART PULSE SET (注3) *
02н	PULSE COUNTER INITIALIZE	29н	PART RATE SET (注3) *
06н	RATE SET (注2)	2Вн	MARGIN TIME SET *
07н	LSPD SET	2Сн	PEAK PULSE SET *
08н	HSPD SET	2Dн	SEND PULSE SET *
ОВн	CW SOFT LIMIT SET *	2Ен	SESPD SET *
ОСн	CCW SOFT LIMIT SET *	2Fн	SPEC INITIALIZE4 *
18н	END PULSE SET *	51н	EXTEND ORIGIN SPEC SET *
19н	ESPD SET *	52н	CONSTANT SCAN MAX PULSE*
1Ан	CSPD SET	60н	SRATE SET
1Вн	OFFSET PULSE SET	61н	SLSPD SET
1Сн	ORIGIN DELAY SET	62н	SHSPD SET
20н	SPEC INITIALIZE3 *	63н	SSRATE ADJUST
22н	RESOLUTION SET *	64н	SERATE ADJUST
24н	PART HSPD SET (注3) *	65н	SCSPD1 ADJUST
25н	INCREMENTAL DATA SET *	66н	SCSPD2 ADJUST
26н	ABSOLUTE DATA SET *		

*印の COMMAND は、応用機能用の COMMAND です。詳細は取扱説明書〔応用機能編〕を参照下さい。

- (注 1) 確認したい内容の COMMAND によって読み出す DATA PORT の数と DATA PORT No.が異なりますが、 当 COMMAND を実行した場合必ず DRIVE DATA3 PORT の READ を行って下さい。
- (注 2) この COMMAND は、演算 MODE 時 URATE/DRATE の指定を DRIVE DATA1 PORT(WRITE)へ設定して下さい。
- (注 3) これらの COMMAND は、PART No.を DRIVE DATA1 PORT(WRITE)へ設定して下さい。
- (注 4) 全ての DATA は、MIN/MAX 処理等の内部処理されない書き込まれた DATA のまま出力されます。 又 DATA 書き込み後、DRIVE TYPE の固定/演算を切り替えても出力される DATA は、以前の型式で 出力されます。
- (注 5) POWER ON/RESET 時に設定される初期設定値は読み出せません。

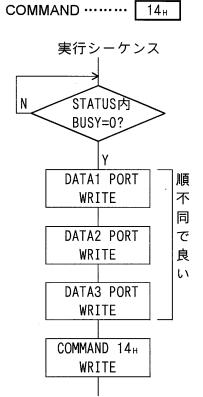
7-12.+/-JOG COMMAND

COMMAND ········· +(CW)方向 DRIVE 時 10_H -(CCW)方向 DRIVE 時 11_H



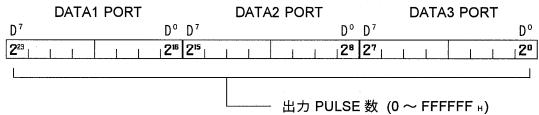
機能: JOG DRIVE を行います。

機能: SCAN DRIVE を行います。


7-13.+/-SCAN COMMAND

COMMAND ········ +(CW)方向 DRIVE 時 12_H -(CCW)方向 DRIVE 時 13_H

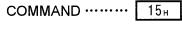
- 38 -


7-14.INCREMENTAL INDEX COMMAND

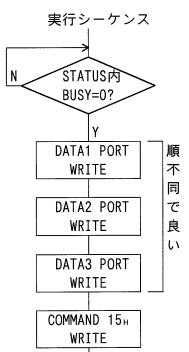
機能: 相対指定の INDEX DRIVE を行います。

DRIVE DATA1,2,3 PORT に出力 PULSE 数と方向を指定します。

DRIVE DATA1,2,3 PORT の内容は以下の通りです。

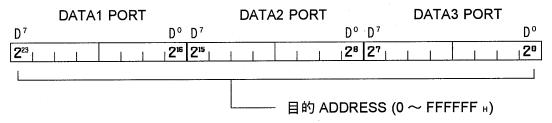


-(CCW)方向の場合、出力 PULSE 数は 2 の補数表現とします。


・出力 PULSE 数の設定例

11/2 · 0 - 0 - 3/10/11/11/11	. 17 3		
出力PULSE(10進表現)	DATA1 PORT	DATA2 PORT	DATA3 PORT
+8,388,607	7F _H	FF _H	FF _H
+10	00н	00н	ОАн
±0	00н	00н	00н
-10	FFH	FFH	F6н
-8,388,607	80н	00н	01 н

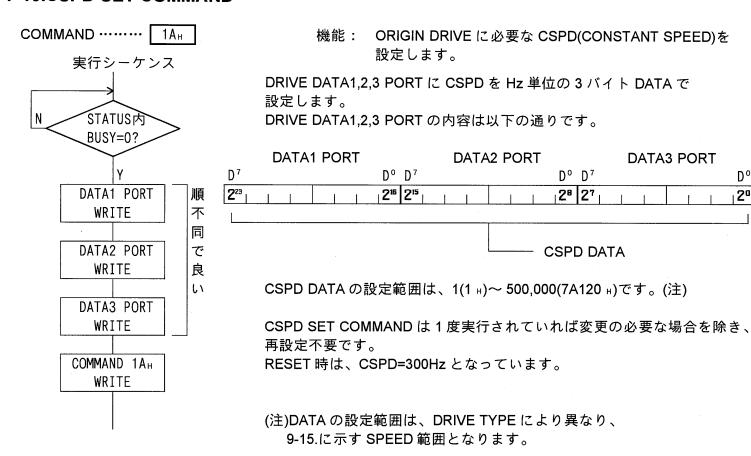
7-15.ABSOLUTE INDEX COMMAND



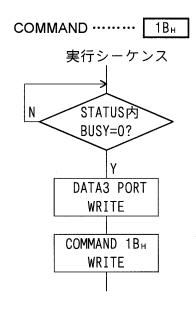
機能: 絶対指定の INDEX DRIVE を行います。

DRIVE DATA1,2,3 PORT に目的地の絶対 ADDRESS を指定します。

DRIVE DATA1.2.3 PORT の内容は以下の通りです。



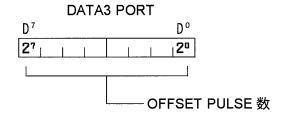
目的 ADDRESS が負数の場合、2 の補数表現とします。


・目的 ADDRESS の設定例

DIN ADDITION OF REP	9		
目的ADDRESS(10進表現)	DATA1 PORT	DATA2 PORT	DATA3 PORT
+8,388,607	7F _H	FF _H	FF _H
+10	00н	00н	0Ан
±0	00н	00н	00н
-10	FF _H	FF _H	F6н
-8,388,607	80н	00н	01н

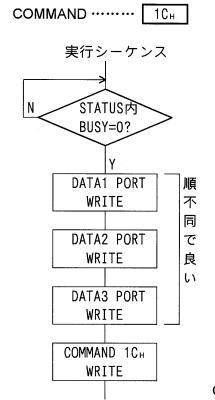
7-16.CSPD SET COMMAND

7-17.OFFSET PULSE SET COMMAND


機能: ORIGIN DRIVE に必要な OFFSET PULSE 数を 設定します。

D٥

20


DRIVE DATA3 PORT に OFFSET PULSE 数を設定します。

DRIVE DATA3 PORT の内容は以下の通りです。

OFFSET PULSE 数の設定範囲は、0(0 н)~ 255(FF н)です。 RESET 時は、OFFSET PULSE 数=0 に設定されます。 OFFSET PULSE SET COMMAND は変更の必要な場合を除き、 再設定不要です。

7-18.ORIGIN DELAY SET COMMAND

機能: 機械原点検出 DRIVE に於ける DELAY TIME を

設定します。

DRIVE DATA1,2,3 PORT へは各々次の DATA を設定します

DATA1 PORT LIMIT DELAY TIME (300ms(3C H))

CCW LIMIT に入り停止した後、反転開始までの

DELAY TIME

DATA2 PORT SCAN DELAY TIME (50ms(0A H))

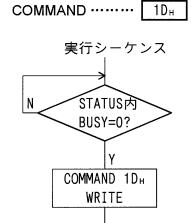
CONSTANT SCAN, SCAN DRIVE 工程に於て、

方向を反転する時の DELAY TIME

DATA3 PORT JOG DELAY TIME (20ms(04 H))

JOG DRIVE 工程に於ける 1PULSE 毎の DELAY TIME

各々は、RESET時は()の値が設定されています。


各 DATA は 00 н~ FF нであり、5ms 単位で設定します。

例) 00 н ········ DELAY TIME 無し

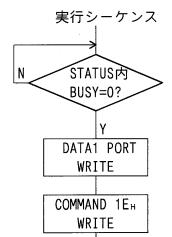
0A н ······ 50ms FF н ···· 1.275s

ORIGIN DELAY SET COMMAND は変更の必要な場合を除き、再設定不要です。

7-19.ORIGIN FLAG RESET COMMAND

機能: 機械原点検出 DRIVE 時に使用する検出 FLAG の RESET

を行います。

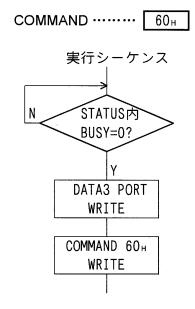

当 COMMAND は機械原点検出 DRIVE 使用時、機械原点近傍までの ABSOLUTE INDEX DRIVE を行いたくない場合にのみ使用します。

詳細は10.を参照下さい。

(注)当 COMMAND の実行は必ず ORIGIN COMMAND 実行前に 行って下さい。

7-20.ORIGIN COMMAND

COMMAND 1EH

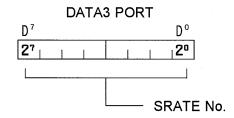

機能: 機械原点検出までの DRIVE を行います。

DRIVE DATA1 PORT へは実行する ORG 型式を指定します。

上記以外の DATA が設定されていた場合は、COMMAND ERROR となり動作は行われません。 DRIVE 終了時、STATUS1 内の DREND BIT が 1 で LSEND, SSEND, FSEND の各 BIT がいずれも 0 の時、機械原点は正常に検出されています。(04 н)

ERROR,LSEND,SSEND,FSEND のいずれかが 1 の場合、機械原点は検出されていません。 尚、DRIVE 中 RESET 入力され検出が中断した場合、STATUS1 内の全 BIT が 0 となります。(00 н)

7-21.SRATE SET COMMAND

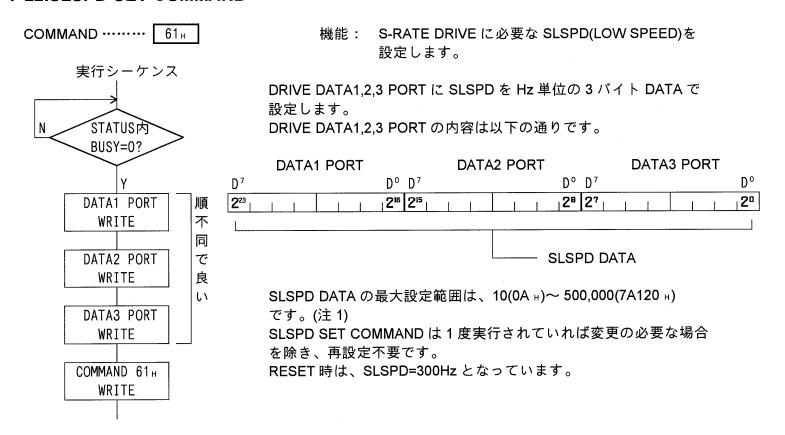


機能: S-RATE DRIVE に必要な SRATE(加減速時定数)を

設定します。

DRIVE DATA3 PORT に SRATE を DATA 表の No.で設定します。

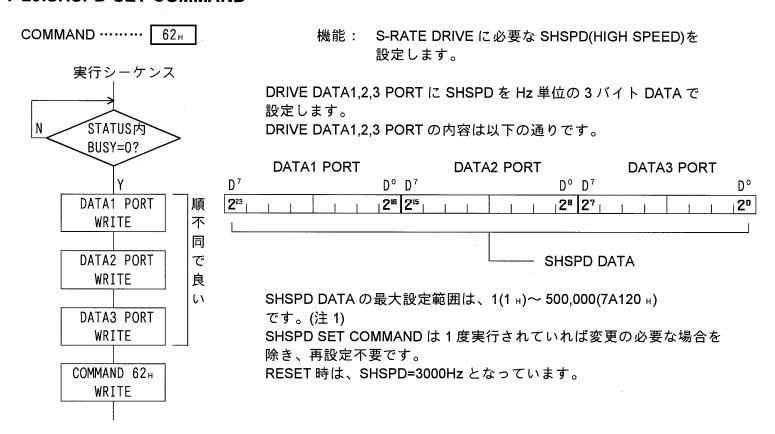
DRIVE DATA3 PORT の内容は以下の通りです。



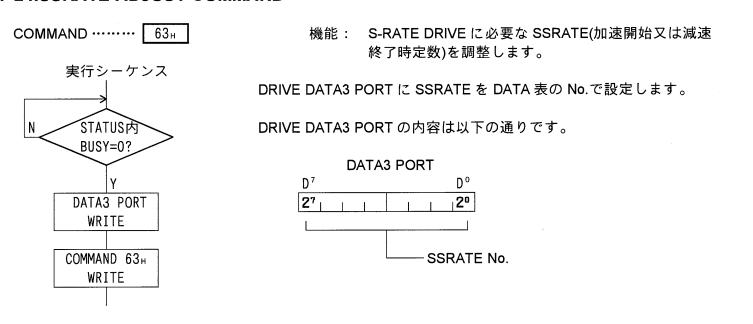
SRATE SET COMMAND は 1 度実行されていれば変更が必要な場合を除き、再設定不要です。

RESET 時は No.=9(100ms/1000Hz)設定となっています。

(注)当 COMMAND を実行すると SSRATE,SERATE が初期値に再設定されます。 SSRATE,SERATE の補正を行った場合は注意して下さい。


7-22.SLSPD SET COMMAND

(注 1)DATA の設定範囲の上限は、DRIVE TYPE により異なります。 9-15.を参照下さい。


(注 2)当 COMMAND を実行すると SCSPD1,SCSPD2 が初期値に再設定されます。 SCSPD1,SCSPD2 の補正を行った場合は注意して下さい。

7-23.SHSPD SET COMMAND

- (注 1)DATA の設定範囲の上限は、DRIVE TYPE により異なります。 9-15.を参照下さい。 (注 2)当 COMMAND を実行すると SCSPD1,SCSPD2 が初期値に再設定されます。
 - SCSPD1,SCSPD2の補正を行った場合は注意して下さい。

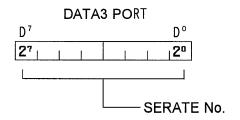
7-24.SSRATE ADJUST COMMAND

SSRATE は、SRATE SET COMMAND によって SRATE の約 8 倍の値に自動設定されます。 この DATA にて仕様を満足する場合は当 COMMAND を実行する必要はありません。 初期値についての詳細は、9-9.を参照下さい。

- (注 1)SRATE SET COMMAND を実行すると実行前に調整した SSRATE は無効となり初期値に再設定されます。 SPEC INITIALIZE1 COMMAND で DRIVE TYPE を変更した場合も同様です。
- (注 2)SSRATE の調整範囲は SSRATE ≧ SRATE です。SSRATE < SRATE 設定の場合は SSRATE=SRATE と なります。

7-25.SERATE ADJUST COMMAND

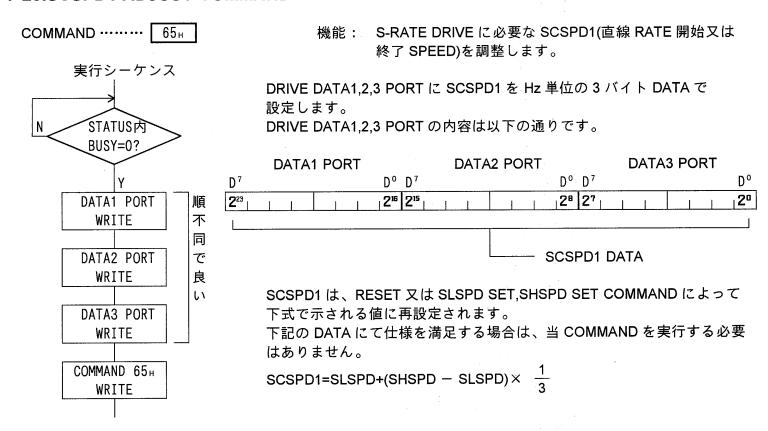
実行シーケンス
N STATUS内 BUSY=0?


V DATA3 PORT WRITE

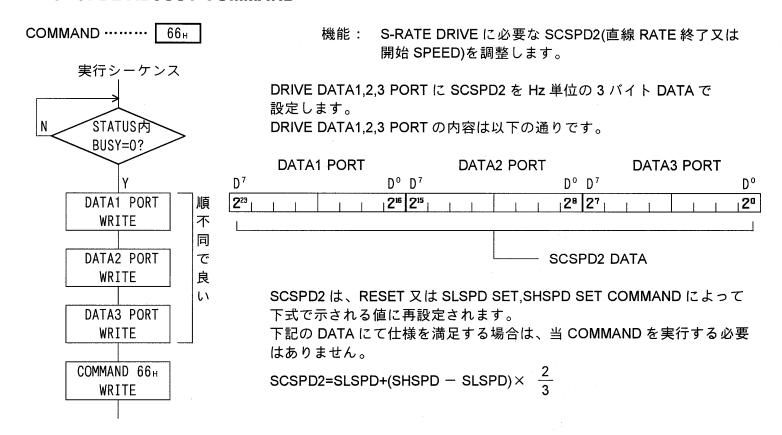
COMMAND 64H WRITE

機能: S-RATE DRIVE に必要な SERATE(加速終了又は減速 開始時定数)を調整します。

DRIVE DATA3 PORT に SERATE を DATA 表の No.で設定します。

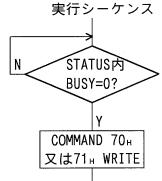

DRIVE DATA3 PORT の内容は以下の通りです。

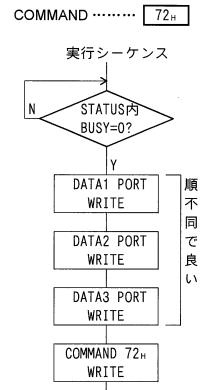
SERATE は、SRATE SET COMMAND によって SRATE の約 8 倍の値に自動設定されます。この DATA にて仕様を満足する場合は当 COMMAND を実行する必要はありません。 初期値についての詳細は、9-9.を参照下さい。


- (注 1)SRATE SET COMMAND を実行すると実行前に調整した SERATE は無効となり初期値に再設定されます。 SPEC INITIALIZE1 COMMAND で DRIVE TYPE を変更した場合も同様です。
- (注 2)SERATE の調整範囲は SERATE ≧ SRATE です。SERATE < SRATE 設定の場合は SERATE=SRATE と なります。

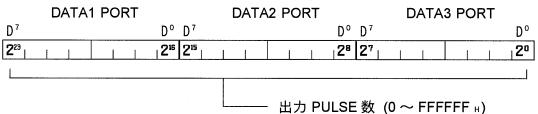
7-26.SCSPD1 ADJUST COMMAND

- (注 1)SLSPD SET 又は SHSPD SET COMMAND を実行すると、実行前の SCSPD1 は無効となり初期値 に再設定されます。SPEC INITIALIZE1 COMMAND で DRIVE TYPE を変更した場合も同様です。
- (注 2)SCSPD1 の調整範囲は SLSPD ≦ SCSPD1 ≦ SCSPD2 です。 SCSPD1 < SLSPD 設定の場合は SCSPD1=SLSPD、 SCSPD1 > SCSPD2 設定の場合は SCSPD1=SCSPD2 となります。


7-27.SCSPD2 ADJUST COMMAND


- (注 1)SLSPD SET 又は SHSPD SET COMMAND を実行すると、実行前の SCSPD2 は無効となり初期値 に再設定されます。SPEC INITIALIZE1 COMMAND で DRIVE TYPE を変更した場合も同様です。
- (注 2)SCSPD2 の調整範囲は SCSPD1 ≦ SCSPD2 ≦ SHSPD です。 SCSPD2 < SCSPD1 設定の場合は SCSPD2=SCSPD1、 SCSPD2 > SHSPD 設定の場合は SCSPD2=SHSPD となります。

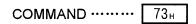
7-28.+/- S-RATE SCAN COMMAND


7-29.INCREMENTAL S-RATE INDEX COMMAND

機能: 相対指定の S-RATE INDEX DRIVE を行います。

DRIVE DATA1,2,3 PORT に出力 PULSE 数と方向を指定します。

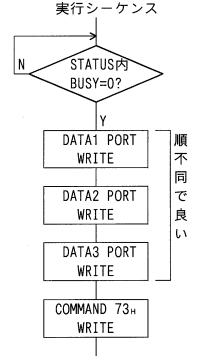
DRIVE DATA1,2,3 PORT の内容は以下の通りです。



-(CCW)方向の場合、出力 PULSE 数は 2 の補数表現とします。

・出力 PULSE 数の設定例

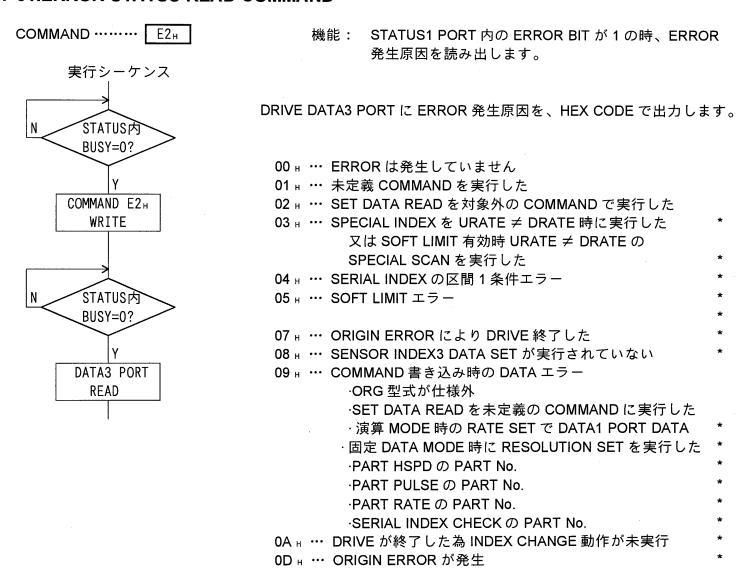
出力PULSE(10進表現	DATA1 PORT	DATA2 PORT	DATA3 PORT				
+8,388,607	7F _H	FF _H	FF _H				
+10	00н	00н	ОАн				
±0	00н	00н	00н				
-10	FF _H	FF _H	F6н				
-8,388,607	80н	00н	01 н				


7-30.ABSOLUTE S-RATE INDEX COMMAND

機能: 絶対指定の S-RATE INDEX DRIVE を行います。

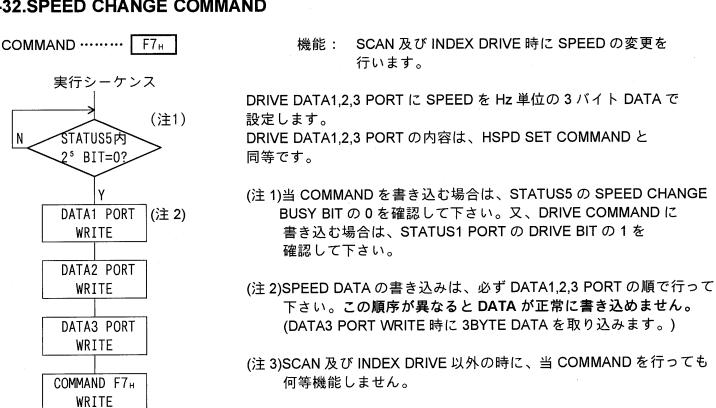
DRIVE DATA1,2,3 PORT に目的地の絶対 ADDRESS を指定します。

DRIVE DATA1,2,3 PORT の内容は以下の通りです。

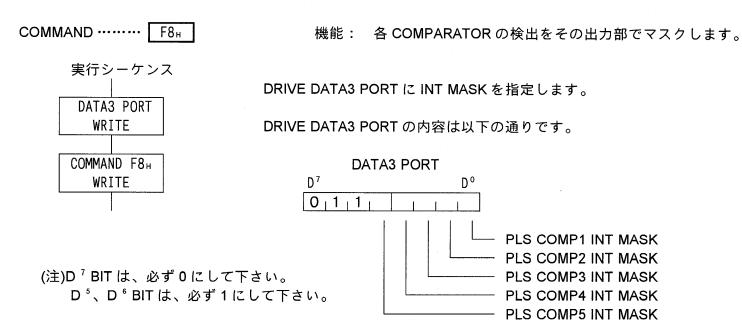

DATA1 PORT			DATA2 PORT			DATA3 PORT													
D 7				D°	D 7						D°	D^7							Do
2 ²³			 	216	215					Ī	28	27	l	<u></u>					2º
L			 																
								- E	的	AD	DRE	ESS	i (0	~	FFF	FF	Fн	ı).	

目的 ADDRESS が負数の場合、2 の補数表現とします。

・目的 ADDRESS の設定例


DIN ADDITEGO O IX AED	y		
目的ADDRESS(10進表現)	DATA1 PORT	DATA2 PORT	DATA3 PORT
+8,388,607	7F _H	FF _H	FFн
+10	00н	00н	ОАн
±0	00н	00н	00н
-10	FF _H	FF _H	F6н
-8,388,607	80н	00н	01 н

7-31.ERROR STATUS READ COMMAND



*印のエラーは、応用機能に関するものです。詳細は取扱説明書〔応用機能編〕を参照下さい。 ERROR CODE は、STATUS1 PORT の ERROR BIT と同様に、当 COMMAND 以外の COMMAND に よりクリアされます。当 COMMAND 実行時は、実行後クリアされます。

7-32.SPEED CHANGE COMMAND

7-33.INT MASK COMMAND

DRIVE DATA3 PORT の各 BIT の詳細を以降に示します。尚、RESET 時の設定はアンダーライン側となります。

(1)PLS COMP1 INT MASK (D °)

PULSE COUNTER COMPARATOR1の検出出力をマスクするかしないかを選択する BIT です。

<u>0:マスクしない</u>

1:マスクする

(2)PLS COMP2 INT MASK (D 1)

PULSE COUNTER COMPARATOR2の検出出力をマスクするかしないかを選択する BIT です。

0:マスクしない

1:マスクする

(3)PLS COMP3 INT MASK (D 2)

PULSE COUNTER COMPARATOR3の検出出力をマスクするかしないかを選択する BIT です。

0:マスクしない

1:マスクする

(4)PLS COMP4 INT MASK (D 3)

PULSE COUNTER COMPARATOR4の検出出力をマスクするかしないかを選択する BIT です。

0:マスクしない

1:マスクする

(5)PLS COMP5 INT MASK (D 4)

PULSE COUNTER COMPARATOR5の検出出力をマスクするかしないかを選択する BIT です。

0:マスクしない

1:マスクする

- (注 1)マスクするの設定であっても、COMPARATOR の一致による停止機能はマスクの影響を受けません。 11-4.を参照下さい。
- (注 2)BUSY=0 を確認する必要はありませんが、DATA3 PORT を書き換える為他の COMMAND の書き込み中に当 COMMAND を実行しないで下さい。

7-34.PORT SELECT COMMAND

(1)ADDRESS COUNTER PORT SELECT COMMAND

COMMAND ········ F9_H 機能

機能: DRIVE DATA1,2,3 PORT を ADDRESS COUNTER の

COUNT DATA READ 専用 PORT に切り替えます。

(2) PULSE COUNTER PORT SELECT COMMAND

COMMAND ····· FC_H

機能: DRIVE DATA1,2,3 PORT を PULSE COUNTER の

COUNT DATA READ 専用 PORT に切り替えます。

(3)SPEED PORT SELECT COMMAND

COMMAND ····· FD_H

機能: DRIVE DATA1,2,3 PORT を出力 PULSE の SPEED DATA

READ 専用 PORT に切り替えます。

これらの COMMAND はいずれも、DRIVE DATA1,2,3 PORT より読み出す DATA を切り替える時に使用します。 実行シーケンスに対する規定はありません。

各 COMMAND 実行後の 200ns 後より DRIVE DATA1,2,3 PORT から常時、切り替えた DATA を読み出す事が出来ます。

各 PORT SELECT COMMAND は 1 度実行されれば、他の PORT SELECT COMMAND を実行するまで有効です。 RESET 時は、DRIVE DATA1,2,3 PORT は、PULSE COUNTER の COUNT DATA READ 専用 PORT となります。

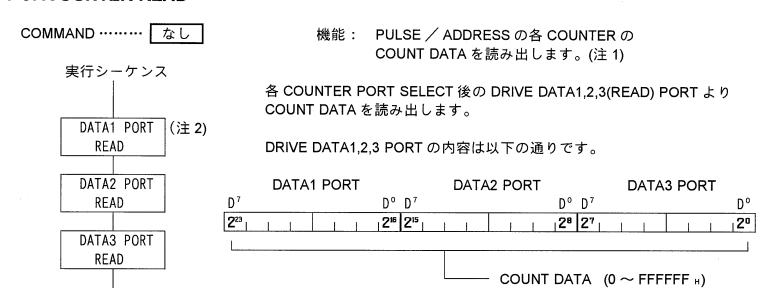
DRIVE DATA1,2,3 PORT は、以下に示す各 COMMAND が書き込まれた場合、一時的に COMMAND に対する READ DATA が出力され、読み出し終了直後にそれまで選択されていた PORT に復帰します。 復帰する為の条件は、DRIVE DATA3 PORT を READ する事です。 <u>従って以下の各 COMMAND を実行した場合は、必ず DRIVE DATA3 PORT を READ して下さい。</u>

ADDRESS READ,SET DATA READ,ERROR STATUS READ,SERIAL INDEX CHECK(応用機能)

7-35.SLOW STOP COMMAND

COMMAND ······· FE_H 機能: DRIVE を減速停止させます。

一定速 DRIVE の場合は、即時停止となります。


実行シーケンスに対しては、特に規定はありませんが、DRIVE を停止させる COMMAND であるので BUSY=0 中に書き込まれた場合は無視されます。又、当機能が動作するのは、DRIVE=1 の時のみであり DRIVE=0 の時は何等機能しません。

7-36.FAST STOP COMMAND

COMMAND ········ FF_H 機能: DRIVE を即時停止させます。

実行シーケンスに対しては、特に規定はありませんが、DRIVE を停止させる COMMAND であるので BUSY=0 中に書き込まれた場合は無視されます。又、当機能が動作するのは、DRIVE=1 の時のみであり DRIVE=0 の時は何等機能しません。

7-37.COUNTER READ

COUNT DATA が負数の場合、2の補数表現です。

· COUNT DATA 例

COUNT DATA(10進表現)	DATA1 PORT	DATA2 PORT	DATA3 PORT
+8,388,607	7F _H	FF _H	FF _H
+10	00н	00н	ОАн
±0	00н	00н	00н
-10	FF _H	FF _H	F6н
-8,388,607	80н	00н	01 н

- (注 1)PULSE / ADDRESS の各 COUNTER の選択は、予め PORT SELECT COMMAND(7-34.)により行っておきます。
- (注 2)DATA READ は必ず DRIVE DATA1,2,3 PORT の順序で行って下さい。このシーケンスが守られない場合、DATA が保証されませんので注意して下さい。

7-38.SPEED READ

- (注 1)必ずしも DRIVE=1 を確認する必要はありませんが、DRIVE 終了後も停止直前の SPEED DATA が 出力されますので注意が必要です。
- (注 2)DATA READ は必ず DRIVE DATA1,2,3 PORT の順序で行って下さい。このシーケンスが守られない場合、DATA が保証されませんので注意して下さい。

8.リクエスト説明

マスター(ユーザアプリケーション)から次に示すリクエストを送信して、CAD-5410-AL770 に実装されている $MCC05v_2$ の各ポート(6.参照)にアクセス(書き込み、読み出し)して、ステッピング モータのコントロールを行

マスターからリクエストを送信すると、CAD-5410-AL770 はアンサーバックを返信します。

よってマスターからリクエストを送信した後は、マスターは必ずアンサーバックを受け取らなければなりません。

8-1.リクエスト、アンサーバック フォーマット

データはすべてバイナリーです。

リクエストパラメータ、アンサーバックバラメータは各リクエスト、アンサーバックにより長さが異なります。 (1)リクエスト フォーマット

1BYTE 1BYTE 1BYTE 1BYTE リクエスト長 |スレーブアドレス| スレーブタイプ |リクエストコード リクエストパラメータ リクエスト長

(注)リクエスト長指定バイトはリクエスト長に含みません

・スレーブアドレス

: 01 _H∼ 1F _H

・スレーブタイプ

: CAD-5410-AL770 のスレーブタイプは、21 нです。

・リクエストコード

: リクエストー覧表を参照してください。

・リクエストパラメータ : 詳細については、各リクエストを参照してください。

(2)アンサーバック フォーマット

アンサーバックにはリクエストにエラーがないことを示すアンサーバックとエラーがあることを示す アンサーバックの2通りがあります。

◎リクエストに論理上のエラーがないことを示すアンサーバック

リクエストが実行された後に返信されます。(リクエストが正常に実行された事を示します。)

1BYTE

1BYTE

アンサーバック長	エラー判定結果	アンサーバックパラメータ
	アンサ	ーバック長

(注)アンサーバック長指定バイトはアンサーバック長に含みません

エラー判定結果は、00 h(エラーなし)になります。

詳細については、各リクエストを参照してください。

◎リクエストに論理上のエラーがある場合

1BYTE

1BYTE

アンサーバック長	エラー判定結果
	アンサーバック長

(注)アンサーバック長指定バイトはアンサーバック長に含みません

エラー判定結果	エラー名称	エラー内容	エラー種別
00 н	(エラーなし)		
01 н	スレーブタイプエラー	スレーブタイプが本機を指定していません	書式エラー
02 н	未定義リクエストエラー	未定義のリクエストコードを受信しました	書式エラー
04 н	リクエスト長エラー	リクエスト長がリクエストとあっていません	書式エラー
03 н、 05 н	フォーマットエラー	パラメータが範囲外です (MCC のコマンドに対しては判定しません)	書式エラー
80 н∼ FF н	全スレーブ共通エラー	マスターの取扱説明書を参照してください	エラーによる

エラー種別の意味:

書式エラー … プログラムの書式フォーマットの間違いによるもの。

エラー発生後も REQRDY=L となり、プログラムの続行が可能。リトライは行わない。

・アンサーバックパラメータ : 各リクエストを参照してください。

・エラー処理例

: マスターの取扱説明書を参照して下さい。

8-2.対 CAD-5410-AL770 リクエストー覧表

- (1)書き込みリクエストの実行時間は、マスターの REQUEST PORT にリクエストの最後のバイトが書き込まれてから、コマンドが実行されるまでの時間です。
- (2)読み出しリクエストの実行時間は、マスターの REQUEST PORT にリクエストの最後のバイトが書き込まれてから、アンサーバックの最初のバイトが返ってくるまでの時間です。
- (3)表に記載している各実行時間は 625000bps 時の値です。

他の通信速度設定の時には14-1.シリアル通信時間を参照して下さい。

(ポイント)コマンドを書き込むときには、データを1つも持たないもの(例: JOG COMMAND)の場合を除いて、使用しないデータポートにもダミーのデータを書き込み、一括書き込みを行った方が合計の時間を短くすることが出来ます。

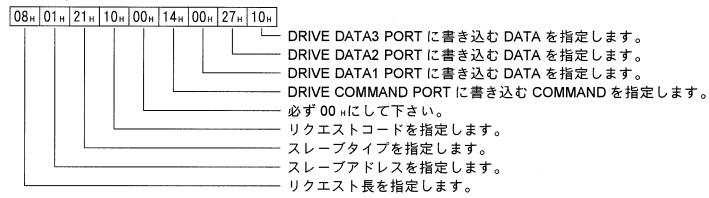
[通信速度 625000bps 時]

		11
コート"	リクエスト名	実行時間(ms)
04 н	設定禁止	
10 н	DRIVE COMMAND一括書き込み	0.30
11 н	DRIVE COMMAND PORT書き込み	0.25
12 н	DRIVE DATA1 PORT書き込み	0.25
13 н	DRIVE DATA2 PORT書き込み	0.25
14 н	DRIVE DATA3 PORT書き込み	0.25
20 н	COUNTER COMMAND一括書き込み	0.30
21 н	COUNTER COMMAND PORT書き込み	0.25
22 н	COUNTER DATA1 PORT書き込み	0.25
23 н	COUNTER DATA2 PORT書き込み	0.25
24 н	COUNTER DATA3 PORT書き込み	0.25
30 н	DRIVE DATA PORT―括読み出し	0.49
31 н	DRIVE DATA1 PORT読み出し	0.46
32 н	DRIVE DATA2 PORT読み出し	0.46
33 н	DRIVE DATA3 PORT読み出し	0.46
40 н	STATUS1 PORT読み出し	0.46
41 н	STATUS2 PORT読み出し	0.46
42 н	STATUS3 PORT読み出し	0.46
43 н	STATUS4 PORT読み出し	0.46
44 н	STATUS5 PORT読み出し	0.46
50 н	制御信号書き込み	0.30
51 н	制御信号指定ビット書き込み	0.30
60 н	制御信号読み出し	0.46
61 н	制御信号指定ビット読み出し	0.46
Е2 н	設定禁止	
Е4 н	設定禁止	
Е6 н	設定禁止	
F1 н	設定禁止	

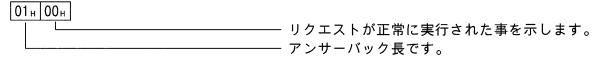
- ※ MCC コマンドの実行時間を含めた時間は 7-1.基本機能 DRIVE COMMAND の COMMND 表、7-2.特殊 COMMAND の COMMND 表を参照して下さい
- ※ MCC コマンドの実行時間を含めた時間は12-1.PULSE COUNTER COMMAND 表を参照して下さい

※この値は通信時間だけのものです 実際に動作に反映される時間は 14-13.の タイミングを参照して下さい ※. 以後に示す例は、すべてスレーブアドレス=01 нの場合を表したものです。

8-3.DRIVE COMMAND 一括書き込みリクエスト

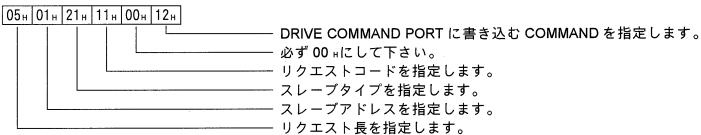

MCC05 v_2 の① DRIVE DATA1 PORT、② DRIVE DATA2 PORT、③ DRIVE DATA3 PORT、④ DRIVE COMMAND PORT に COMMAND、DATA を一括で書き込みます。

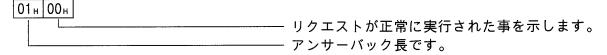
(実際に MCC05v2 に書き込む順序は①~④の順番となっています。)


例.002710 +(+10000)パルス INCREMENTAL INDEX COMMAND

DRIVE DATA1 PORT \leftarrow 00 H, DRIVE DATA2 PORT \leftarrow 27 H, DRIVE DATA3 PORT \leftarrow 10 H DRIVE COMMAND PORT \leftarrow 14 H,

(1)リクエスト

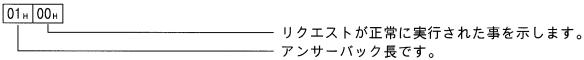

(2)アンサーバック



8-4.DRIVE COMMAND PORT 書き込みリクエスト

MCC05v2の DRIVE COMMAND PORT に COMMAND を書き込みます。 例.+SCAN COMMAND DRIVE COMMAND PORT ← 12 H

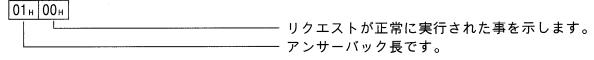
(1)リクエスト


8-5.DRIVE DATA1 PORT 書き込みリクエスト

MCC05v2の DRIVE DATA1 PORT に DATA を書き込みます。 例.DRIVE DATA1 PORT ← 00 H

(1)リクエスト

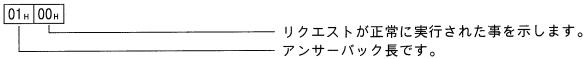
(2)アンサーバック


8-6.DRIVE DATA2 PORT 書き込みリクエスト

MCC05 $_{V2}$ の DRIVE DATA2 PORT に DATA を書き込みます。例.DRIVE DATA2 PORT \leftarrow 27 $_{\rm H}$

(1)リクエスト

(2)アンサーバック



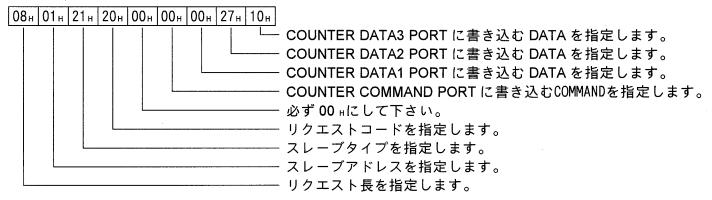
8-7.DRIVE DATA3 PORT 書き込みリクエスト

MCC05v2の DRIVE DATA3 PORT に DATA を書き込みます。 例.DRIVE DATA3 PORT ← 10 н

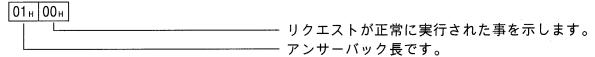
(1)リクエスト

8-8.COUNTER COMMAND 一括書き込みリクエスト

 $MCC05v_2 \mathcal{O} \textcircled{1}$ COUNTER DATA1 PORT、 ② COUNTER DATA2 PORT、 ③ COUNTER DATA3 PORT、

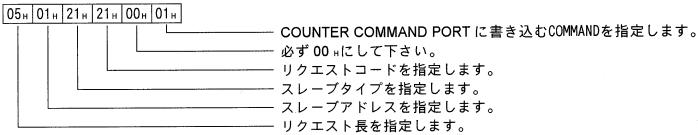

④ COUNTER COMMAND PORT に COMMAND、DATA を一括で書き込みます。

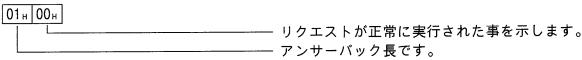
(実際に MCC05v2 に書き込む順番は①~④の順番となっています。)


例.002710 +(+10000)パルス PULSE COUNTER PRESET COMMAND

COUNTER DATA1 PORT \leftarrow 00 H, COUNTER DATA2 PORT \leftarrow 27 H, COUNTER DATA3 PORT \leftarrow 10 H COUNTER COMMAND PORT \leftarrow 00 H,

(1)リクエスト

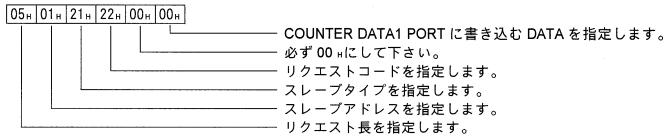

(2)アンサーバック

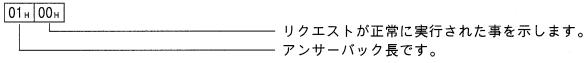


8-9.COUNTER COMMAND PORT 書き込みリクエスト

MCC05v2の COUNTER COMMAND PORT に COMMAND を書き込みます。 例.PULSE COUNTER COMPARE REGISTER1 SET COMMAND(DATA1 ~ 3 PORT 書き込み済みの場合) COUNTER COMMAND PORT ← 01 н

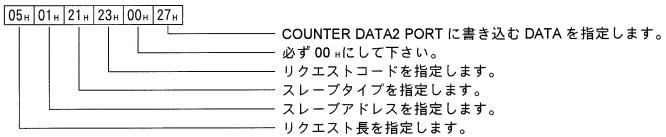
(1)リクエスト

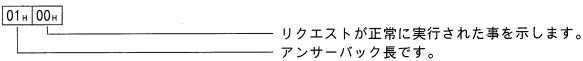



8-10.COUNTER DATA1 PORT 書き込みリクエスト

MCC05v2の COUNTER DATA1 PORT に DATA を書き込みます。 例.COUNTER DATA1 PORT ← 00 н

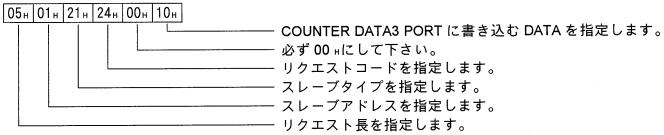
(1)リクエスト

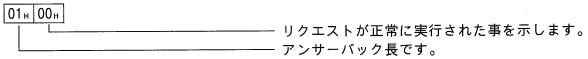

(2)アンサーバック


8-11.COUNTER DATA2 PORT 書き込みリクエスト

MCC05 $_{V2}$ の COUNTER DATA2 PORT に DATA を書き込みます。 例.COUNTER DATA2 PORT \leftarrow 27 $_{\rm H}$

(1)リクエスト

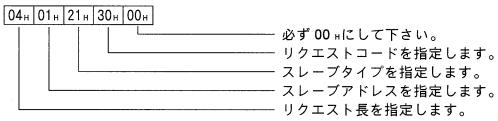

(2)アンサーバック



8-12.COUNTER DATA3 PORT 書き込みリクエスト

MCC05v2の COUNTER DATA3 PORT に DATA を書き込みます。 例.COUNTER DATA3 PORT ← 10 H

(1)リクエスト

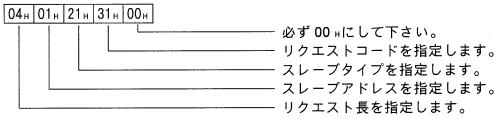


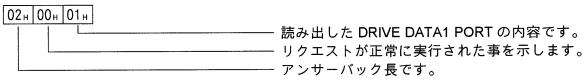
8-13.DRIVE DATA PORT 一括読み出しリクエスト

MCC05v2の① DRIVE DATA1 PORT、② DRIVE DATA2 PORT、③ DRIVE DATA3 PORT を一括で読み出します。 読み出す順番は①~③の順番です。

例.読み出した内容が 01 н、02 н、0A нであることを示しています。

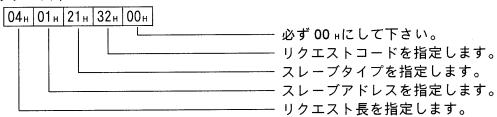
(1)リクエスト

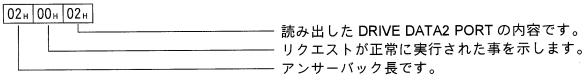

(2)アンサーバック


8-14.DRIVE DATA1 PORT 読み出しリクエスト

MCC05v2の DRIVE DATA1 PORT を読み出します。 例.読み出した内容が 01 Hであることを示しています。

(1)リクエスト

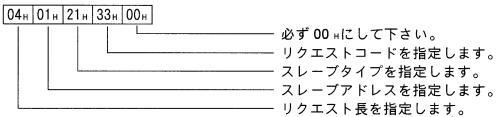

(2)アンサーバック

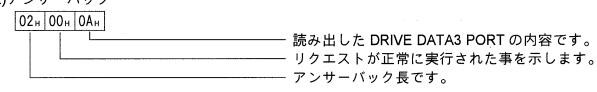


8-15.DRIVE DATA2 PORT 読み出しリクエスト

MCC05v2の DRIVE DATA2 PORT を読み出します。 例.読み出した内容が 02 Hであることを示しています。

(1)リクエスト

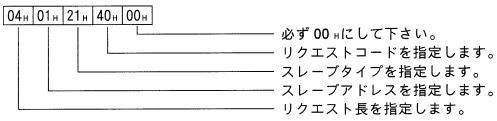



8-16.DRIVE DATA3 PORT 読み出しリクエスト

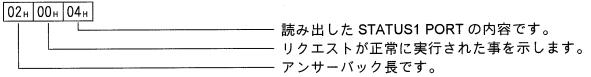
MCC05v2の DRIVE DATA3 PORT を読み出します。 例.読み出した内容が OA Hであることを示しています。

(1)リクエスト

(2)アンサーバック


8-17.STATUS1 PORT 読み出しリクエスト

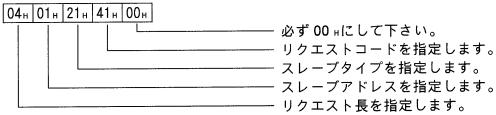
MCC05v2の STATUS1 PORT を読み出します。

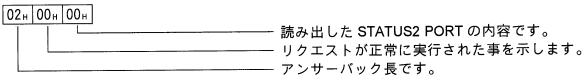

例.DRIVE 正常終了後の状態。

読み出した内容が 04 Hであることを示しています。

(1)リクエスト

(2)アンサーバック

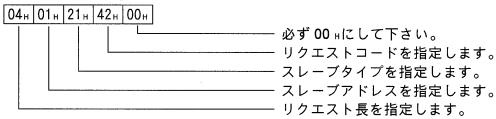


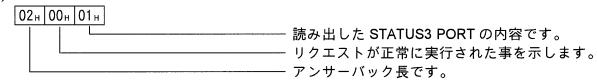

8-18.STATUS2 PORT 読み出しリクエスト

MCC05v2の STATUS2 PORT を読み出します。 例.信号が全て OFF の状態。

読み出した内容が00 нであることを示しています。

(1)リクエスト

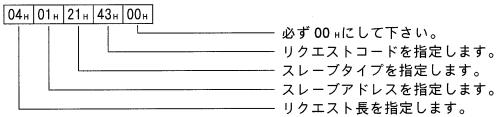



8-19.STATUS3 PORT 読み出しリクエスト

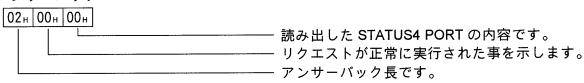
MCC05v2の STATUS3 PORT を読み出します。 例.PLS COUNTER1 が一致した状態。 読み出した内容が 01 Hであることを示しています。

(1)リクエスト

(2)アンサーバック

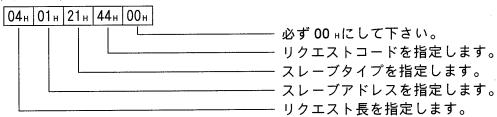

8-20.STATUS4 PORT 読み出しリクエスト

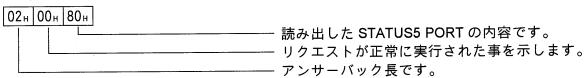
MCC05v2の STATUS4 PORT を読み出します。


例.信号が全て OFF の状態。

読み出した内容が 00 Hであることを示しています。

(1)リクエスト

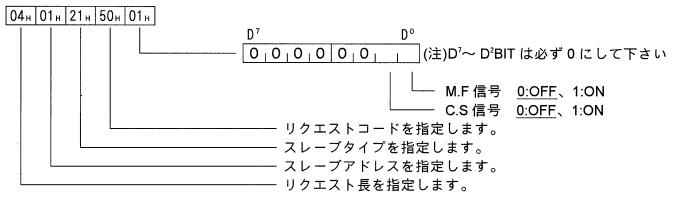

(2)アンサーバック



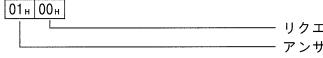
8-21.STATUS5 PORT 読み出しリクエスト

MCC05v2の STATUS5 PORT を読み出します。 例.INDEX CHANGE が BUSY 状態。 読み出した内容が 80 ⊬であることを示しています。

(1)リクエスト



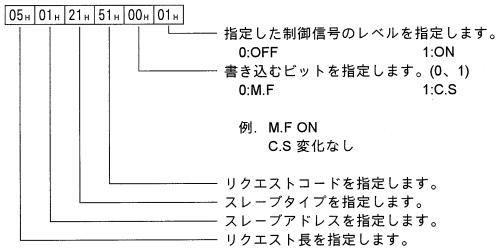
8-22.制御信号書き込みリクエスト

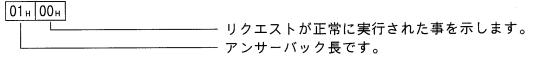

制御信号を書き込みます。 例.M.F 信号をアクティブ(励磁 OFF)に変更。

RESET 時の設定はアンダーライン側となります。

(1)リクエスト

(2)アンサーバック

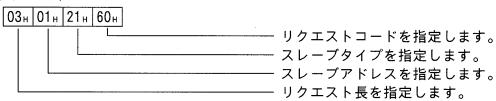



── リクエストが正常に実行された事を示します。 ── アンサーバック長です。

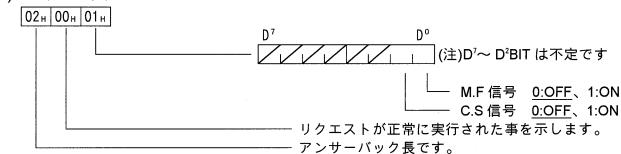
8-23.制御信号指定ビット書き込みリクエスト

指定した制御信号を変化します。指定外の信号は変化しません。 例.M.F 信号をアクティブ(励磁 OFF)に変更。

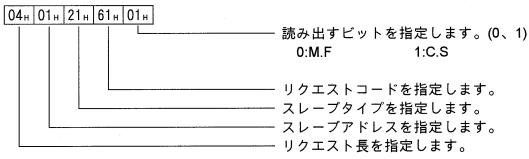
(1)リクエスト

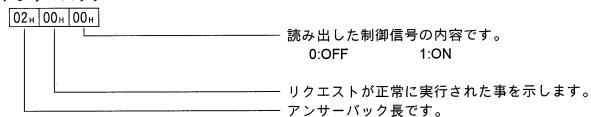


8-24.制御信号読み出しリクエスト


制御信号の現在の状態を読み出します。 例.M.F 信号がアクティブ(励磁 OFF)状態。

RESET 時の設定はアンダーライン側となります。


(2)アンサーバック

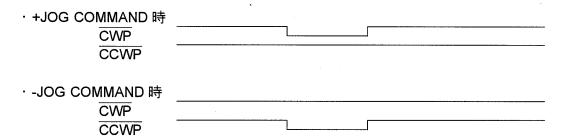

8-25.制御信号指定ビット読み出しリクエスト

指定した制御信号の現在の状態を読み出します。 例.C.S=0,M.F=1 の状態。C.S の状態を読み出します。

(1)リクエスト

(2)アンサーバック

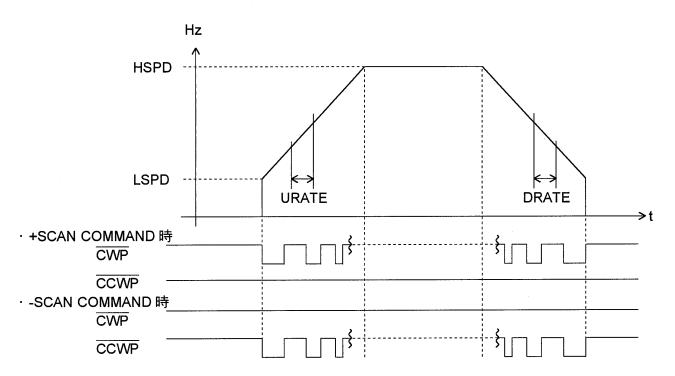
8-26.イニシャルエラー


マスターが初期化を行うことにより、自動的に全スレーブに対しイニシャルリクエストを送信します。 スレーブ側はこのリクエストを受信するまではイニシャルエラー(コード 80 н)を返します。 よって、スレーブの初期化後には必ずマスターの初期化をする必要があります。初期化についてはマスターの 取扱説明書を参照して下さい。

この機能により、スレーブ側に瞬時停電等の不意の理由により RESET が入った場合、不正なデータでの動作 続行を防止する事が出来ます。

9. DRIVE 機能詳細

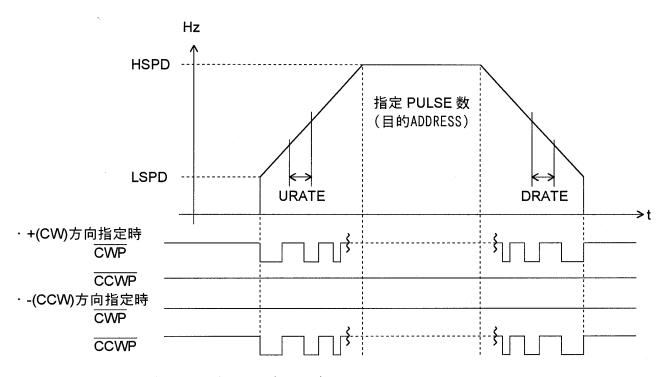
9-1.JOG DRIVE 機能


+/-JOG COMMAND により 1PULSE DRIVE を行います。

JOG DRIVE に必要な DATA はありません。

9-2.SCAN DRIVE 機能

+/-SCAN COMMAND により加減速 DRIVE を行います。停止は 9-10.,9-11.,9-12.に示すいずれかの方法によります。


SCAN DRIVE に必要な DATA は下記のものです。

DATA 名称	設定 COMMAND
HSPD(HIGH SPEED)	HSPD SET
LSPD(LOW SPEED)	LSPD SET
URATE(加速時定数)	RATE SET
DRATE(減速時定数)	RATE SET

(注)LSPD ≧ HSPD の指定であった場合、HSPD による一定速 DRIVE となります。

9-3.INDEX DRIVE 機能

INCREMENTAL INDEX COMMAND(又は、ABSOLUTE INDEX COMMAND)により指定 PULSE 数(又は目的 ADDRESS まで)の加減速 DRIVE を行います。

INDEX DRIVE に必要な DATA は下記のものです。

		×	17 (10)	- / 0
DATA 名	名称			

設定 COMMAND

HSPD(HIGH SPEED) LSPD(LOW SPEED) URATE(加速時定数) DRATE(減速時定数) 指定 PULSE(目的 ADDRESS)

HSPD SET LSPD SET RATE SET RATE SET

INDEX DRIVE 起動時

(注 1)LSPD ≧ HSPD の指定であった場合、HSPD による一定速 DRIVE となります。

(注 2)LSPD < HSPD 且つ、URATE ≠ DRATE の設定の場合、PULSE 出力までのタイミングが URATE= DRATE 設定時と異なりますので、 注意して下さい。詳細は 14-5.のタイミングを参照下さい。 この為特に必要のない限り同じ DATA とする事をお勧めします。

9-4.DRIVE SPEED 変更機能

SPEED CHANGE COMMAND により、SCAN,INDEX DRIVE 中に限り SPEED を変更する事が出来ます。 SPEED CHANGE COMMAND により新たに SPEED が指定されると、その SPEED に向かって加速又は減速します。

- (注 1)URATE ≠ DRATE の INDEX DRIVE 時には、SPEED 変更は出来ません。
- (注 2)SPEED 変更範囲は、LSPD <変更 SPEED < HSPD です。
- (注 3)SPEED CHANGE COMMAND 実行後、内部でこれを受け付けるまでの間、新たな SPEED CHANGE COMMAND は無視されます。SPEED CHANGE COMMAND を受信可能か否かは、STATUS5 PORT 内 SPEED CHANGE BUSY BIT で確認出来ますので、この確認後 SPEED CHANGE COMMAND を実行する 様にして下さい。

9-5.機械原点検出機能(ORIGIN DRIVE)

ORIGIN COMMAND により、機械原点検出までの DRIVE を行います。

機械原点検出までの DRIVE は、JOG DRIVE,CONSTANT SCAN DRIVE,SCAN DRIVE,ABSOLUTE INDEX DRIVE を組み合わせて行われます。

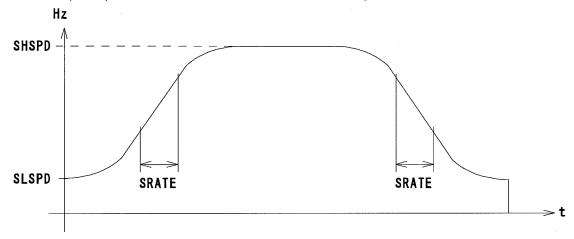
機械原点検出型式には9種あります。型式及び工程についての詳細は、10. に説明します。

ORIGIN DRIVE に必要な DATA は下記のものです。

DATA 名称	設定 COMMAND
HSPD(HIGH SPEED)	HSPD SET
LSPD(LOW SPEED)	LSPD SET
CSPD(CONSTANT SPEED)	CSPD SET
URATE(加速時定数)	RATE SET
DRATE(減速時定数)	RATE SET
OFFSET PULSE	OFFSET PULSE SET
LDELAY(LIMIT DELAY TIME)	ORIGIN DELAY SET
SDELAY(SCAN DELAY TIME)	ORIGIN DELAY SET
JDELAY(JOG DELAY TIME)	ORIGIN DELAY SET

9-6.LIMIT SENSOR 兼用機械原点検出機能

機械原点検出型式の内2種は、ORIGINセンサとして、CCW LIMIT入力信号を使用出来ます。この機能によりセンサの削減が可能です。

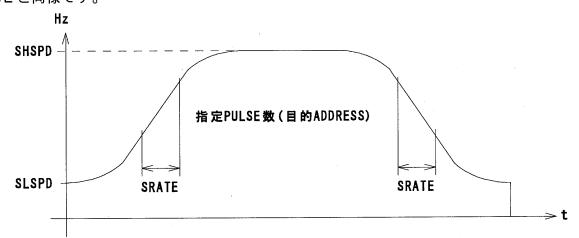

型式及び工程についての詳細は、10. に説明します。

9-7.S-RATE SCAN DRIVE 機能

+/- S-RATE SCAN COMMAND によりS字加減速 DRIVE を行います。

S字加減速 DRIVE は SLSPD、SHSPD 間の速度差を 3 等分し、3 等分した中間の速度領域は SRATE による直線的な加減速を、残りの領域は曲線的で滑らかな加減速を行います。

停止は 9-10.,9-11.,9-12.に示すいずれかの方法によります。



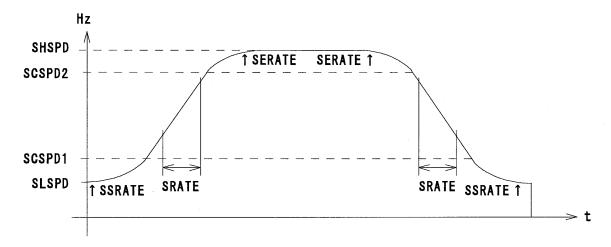
S-RATE SCAN DRIVE に必要な DATA は下記のものです。

(注)SLSPD ≧ SHSPD の指定であった場合、SHSPD による一定速 DRIVE となります。

9-8.S-RATE INDEX DRIVE 機能

S-RATE INCREMENTAL INDEX COMMAND(又は S-RATE ABSOLUTE INDEX COMMAND)により指定 PULSE 数(又は目的 ADDRESS まで)の S 字加減速 DRIVE を行います。加減速 RATE 特性は S-RATE SCAN DR IVE と同様です。

S-RATE INDEX DRIVE に必要な DATA は下記のものです。


DATA 名称	設定 COMMAND
SHSPD(S-RATE DRIVE 専用 HIGH SPEED) SLSPD(S-RATE DRIVE 専用 LOW SPEED) SRATE(S-RATE DRIVE 専用加減速時定数) 指定 PULSE(目的 ADDRESS)	SHSPD SET SLSPD SET SRATE SET S-RATE INDEX DRIVE 起動時

(注)SLSPD ≧ SHSPD の指定であった場合、SHSPD による一定速 DRIVE となります。

9-9.S-RATE DRIVE パラメータ調整機能

S-RATE DRIVE を行う為の内部パラメータの調整が可能です。

S-RATE DRIVE を行う為には SSRATE,SERATE,SCSPD1,SCSPD2 の 4 種の内部パラメータが必要となります。 これらのパラメータは通常 SRATE,SLSPD,SHSPD 設定時に MCC05v2 内部で自動的に初期値に設定されますが、 各調整 COMMAND によって任意の値に調整する事が可能です。

DATA 名称	調整 COMMAND
SSRATE(加速開始及び減速終了時の時定数)	SSRATE ADJUST
SERATE(加速終了及び減速開始時の時定数)	SERATE ADJUST
SCSPD1(加速時直線 RATE 開始及び減速時直線 RATE 終了 SPEED)	SCSPD1 ADJUST

(1)SSRATE

DATA の説明 ------加速開始及び減速終了時の瞬間の時定数を示します。

SCSPD2(加速時直線 RATE 終了及び減速時直線 RATE 開始 SPEED)

SLSPD ~ SCSPD1 間は時定数が SSRATE ~ SRATE へ滑らかに変化します。

初期値 -----SRATE SET COMMAND によって SRATE の約 8 倍の値に自動設定されます。

(注 1)DRIVE TYPE が固定 MODE の場合、SSRATE の初期値は SRATE の値によって は RATE DATA TABLE 上に存在しない値となります。(SRATE の 8 倍の値が RATE DATA TABLE 上に存在しなくても、SRATE の 8 倍の値が SSRATE の初期値として採用される。)

SCSPD2 ADJUST

(注 2)SRATE の値が大きい場合、SSRATE は設定可能な RATE の最大値で頭打ちとなります。各 DRIVE TYPE における RATE の最大値は、およそ以下の通りです。

L-TYPE ······· 約 1030ms/1000Hz M-TYPE ····· 約 51.5ms/1000Hz H-TYPE ····· 約 5.15ms/1000Hz

演算 MODE ······ RESOLUTION DATA を D とした時

RATE 最大值 = 1,030 ÷ D(ms/1000Hz)

(演算 MODE の詳細は取扱説明書〔応用機能編〕を参照下さい。)

調整範囲 -----SSRATE ≧ SRATE

(注 1)SSRATE < SRATE 設定の場合は SSRATE=SRATE となります。

(注 2)SRATE SET COMMAND を実行すると実行前に調整した SSRATE は無効となり 初期値に再設定されます。

SPEC INITIALIZE1 COMMAND で DRIVE TYPE を変更した場合も初期値への再設定が行われます。

(2)SERATE

DATA の説明 ------加速終了及び減速開始時の瞬間の時定数を示します。

SCSPD2 ~ SHSPD 間は時定数が SRATE ~ SERATE へ滑らかに変化します。

初期値 -----SSRATE と同様です。 調整範囲 -----SSRATE と同様です。 (3)SCSPD1

DATA の説明 ------SRATE による直線 RATE の開始又は終了 SPEED を示します。

SCSPD1 ~ SCSPD2 間は時定数が SRATE 固定となり直線的な RATE 特性を示しま

す。

初期値 ------SLSPD SET 又は SHSPD SET COMMAND によって下式で示される値に設定されます

SCSPD1=SLSPD+(SHSPD - SLSPD) $\times \frac{1}{3}$

調整範囲 -----SLSPD ≦ SCSPD1 ≦ SCSPD2

(注 1)SCSPD1 < SLSPD 設定の場合は SCSPD1=SLSPD、

SCSPD1 > SCSPD2 設定の場合は SCSPD1=SCSPD2 となります。

(注 2)SLSPD SET 又は SHSPD SET COMMAND を実行すると実行前の SCSPD1 は

無効となり初期値に再設定されます。

SPEC INITIALIZE1 COMMAND で DRIVE TYPE を変更した場合も初期値への

再設定が行われます。

(4)SCSPD2

DATA の説明 ------SRATE による直線 RATE の終了又は開始 SPEED を示します。

SCSPD1 ~ SCSPD2 間は時定数が SRATE 固定となり直線的な RATE 特性を示しま

す。

初期値 ------SLSPD SET 又は SHSPD SET COMMAND によって下式で示される値に設定されます

SCSPD2=SLSPD+(SHSPD - SLSPD) $\times \frac{2}{3}$

調整範囲 ······SCSPD1 ≦ SCSPD2 ≦ SHSPD

(注 1)SCSPD2 < SCSPD1 設定の場合は SCSPD2=SCSPD1、

SCSPD2 > SHSPD 設定の場合は SCSPD2=SHSPD となります。

(注 2)SLSPD SET 又は SHSPD SET COMMAND を実行すると実行前の SCSPD2 は

無効となり初期値に再設定されます。

SPEC INITIALIZE1 COMMAND で DRIVE TYPE を変更した場合も初期値への

再設定が行われます。

9-10.減速停止機能

SLOW STOP COMMAND により PULSE 出力の減速停止を行う事が出来ます。

上記により PULSE 出力を停止した場合、SSEND=1 となります。

9-11.即時停止機能

▲ 警告

システム異常時の緊急停止としては、駆動系(AC)の電源遮断を併用して下さい。 コントローラ及び配線系統に異常があった場合、停止出来ない可能性があり 重大な事故をまねく恐れがあります。 詳しくは、1-3.を参照下さい。

FSSTOP 信号、FAST STOP COMMAND により PULSE 出力の即時停止を行う事が出来ます。 上記により PULSE 出力を停止した場合、FSEND=1 となります。 FSSTOP 信号の場合、即時停止します。

9-12.LIMIT 停止機能

▲ 警告

システム異常時の緊急停止としては、駆動系(AC)の電源遮断を併用して下さい。 コントローラ及び配線系統に異常があった場合、停止出来ない可能性があり 重大な事故をまねく恐れがあります。 詳しくは、13を参照下さい。

⚠ 注意

システムの何等かの異常や設定を誤った場合、機械や加工品などの破損又はけがの恐れがあります。この為回転系以外装置では必ず LIMIT 停止機能を使用して下さい。

⚠ 注意

LIMIT 停止の型式を減速停止にした場合、停止する前にメカの限界点へぶつかり機械や加工品などを破損させる恐れがあります。 この場合、RATE,HSPD 等を変更した場合停止点が変化します。

+(CW)方向 PULSE 出力時は CWLM 入力信号、-(CCW)方向 PULSE 出力時は CCWLM 入力信号により PULSE 出力の停止を行う事が出来ます。

上記により PULSE 出力を停止した場合、LSEND=1 となります。

尚、SPEC INITIALIZE1 COMMAND により LIMIT STOP TYPE を即時/減速に切り替える事が出来ます。 RESET 時には、即時停止が選択されます。

9-13.現在位置読み出し機能

ADDRESS READ COMMAND により現在位置を読み出す事が可能です。

DATA の保証範囲は+8,388,607 ~ -8,388,607 PULSE エリアです。

現在位置は RESET 時に 0 に RESET されますが、ADDRESS INITIALIZE COMMAND により任意の値に設定する事も可能です。

9-14.SPEED DATA Hz 単位設定機能

SPEED DATA(HSPD,LSPD,CSPD,SHSPD,SLSPD 等)を、Hz 単位の 3 バイト DATA として設定する事が可能です。

DATA の設定範囲は 1 ~ 500,000 ですので、指定可能 SPEED は 1Hz ~ 500kHz となります。

*SPEED 設定例

HSPD として 10,000(002710 H)を設定した場合

HSPD=10000Hz となります。

但し、MCC05v2の出力周波数コントロールは基準クロックを計数する事によって行っていますので、

SPEED DATA 設定値に対し、物理的に出力不可能な周波数が現れる場合があります。

この為、特に高速域において設定値と実際の出力周波数が異なる場合が生じます。

SPEED DATA の設定値を F'とすると実際に出力される周波数 F は次式で示されます。

上式で ~~線部の演算の小数点以下が無視される事になるので実際の出力周波数は、設定値よりも高目の周波数となります。設定値と実際の出力の間に精度が要求される時は、これを考慮して下さい。

9-15.DRIVE TYPE 切り替え機能

MCC05v2の加減速 DRIVE 時の加減速時定数の設定方法には、大別して固定 DATA MODE と演算 MODE の2種があり、固定 DATA MODE には、出力周波数、加減速時定数の設定範囲、加減速時の速度差等の要因から、L-TYPE,M-TYPE,H-TYPE の 3TYPE が用意されています。

尚、演算 MODE についての詳細は取扱説明書〔応用機能編〕を参照下さい。

固定 DATA MODE では、加減速時定数(URATE,DRATE)が、予め DATA TABLE により固定されていますので、USER は、最適な時定数を DATA TABLE の No.によって指定します。RATE DATA TABLE は 2 4 . を参照下さい。各 TYPE における SPEED 範囲、RATE 範囲、及び加減速時の速度差は以下の通りです。

		汽管 MODE			
	L-TYPE	M-TYPE	H-TYPE	演算 MODE	
SPEED 範囲 (LSPD,SLSPD)	10Hz ∼ 100kHz	10Hz ∼ 500kHz	10Hz ∼ 500kHz	10Hz ∼ 500kHz	
SPEED 範囲 (上記以外)	1Hz ~ 100kHz	1Hz ~ 500kHz	1Hz ∼ 500kHz	1Hz ∼ 500kHz	
RATE 範囲	1000ms/1000Hz ~ 1.0ms/1000Hz	50ms/1000Hz ~ 0.05ms/1000Hz	5ms/1000Hz ~ 0.005ms/1000Hz	1030ms/1000Hz ~ 0.004ms/1000Hz	
速度差(注)	51Hz/STEP ~ 62Hz/STEP	1kHz/STEP ∼ 4kHz/STEP	10kHz/STEP ~ 68kHz/STEP	51Hz/STEP ~ 68kHz/STEP	

(注)速度差は、加減速時の変速前後の速度差を示します。この速度差は、低速時は比較的小さく、高速に加速するに連れ徐々に速度差が拡大していきます。

9-16.現在 SPEED 読み出し機能

DRIVE DATA1,2,3 PORT より DRIVE 中の SPEED DATA を読み出す事が可能です。 読み出した DATA に対し、次式の換算を行い現在 SPEED の算出を行って下さい。

現在 SPEED=
$$\frac{160,000,000}{V}$$
 (Hz)

但し、V=READ DATA とします。

- (注)当機能により読み出す事の出来る SPEED 範囲は、DATA 長が 3 バイトである為、約 9.5Hz ~ 500kHz です。 低速域の SPEED READ には注意して下さい。(9.5Hz 以下を出力中は、DATA が狂います。)
- ※ SPEED 読み出し時の注意

DRIVE DATA1,2,3 PORT は通常、PULSE COUNTER の COUNTER 値を読み出す為の専用 PORT となっていますので SPEED READ を行う場合は、PORT 機能を SPEED DATA 読み出し用に切り替える必要があります。この切り替えは SPEED PORT SELECT COMMAND にて行います。

9-17.設定 DATA 読み出し機能

設定した各種 DATA や SPEC INITIALIZE DATA 等を SET DATA READ COMMAND により読み出す事が可能です。

これにより設定した DATA の確認が行えますので、システム・デバッグ時や信頼性を重視する応用等に利用出来ます。

9-18.DRIVE/HOLD 電流自動切替機能

ドライブパルス入力によりモータへの出力電流が HOLD 電流から DRIVE 電流に切り替わり、

約 150ms 後に HOLD 電流に戻ります。

DRIVE 電流中にパルス入力されれば DRIVE 電流は継続されます。

タイミングは 14-12.を参照して下さい。

9-19.モータ励磁停止入力(M.F)機能

⚠ 注意

モータの保持力低下により、機械の破損、けがをまねくおそれがあります。 安全を確認して入力して下さい。

制御信号リクエストで M.F を ON にすることにより、モータ出力電流を遮断します。 この時のモータトルクはディテントトルクになります。

この信号が入力されるとモータトルクがなくなり、搬送物を保持できない場合があります。特に上下駆動(Z 軸など)では、搬送物が落下するおそれがあります。 タイミングは 14-13.を参照して下さい。

9-20.ステップ角切替入力(C.S)機能

制御信号リクエストで C.S を ON にすることにより、ステップ角を 1/20 分割に切り替えます。 ステップ角選択スイッチの設定は無視されます。

C.S 信号でステップ角を切り替えても位置はずれません。 タイミングは 14-14.を参照して下さい。

・ステップ角選択スイッチと C.S 信号

〔ステップ角選択スイッチ〕

スイッチ No.	分割数	ステップ角(°)		
		0.72° t-タ	0.36° モータ	
0	1/1	0.72	0.36	
1	1/2	0.36	0.18	
2	1/4	0.18	0.09	
3	1/8	0.09	0.045	
4	1/10	0.072	0.036	
5	1/16	0.045	0.0225	
6	1/20	0.036	0.018	
7	1/40	0.018	0.009	
8	1/80	0.009	0.0045	
9	1/160	0.0045	0.00225	

〔C.S 信号入力時〕

1/20 分割

(0.036° または 0.018°)

9-21.過熱警告信号出力(O.H.A)機能

▲ 警告

過熱により、火災のおそれがあります。 この信号が出力されたときは運転を停止してください。

- ●内部温度が約 65 ℃以上になった時、信号を出力(温度センサの接点が ON)します。 この時モータ出力電流は遮断されません。
- ●この信号が出力されたときは運転を止めてモータ及びドライバに異常が発生していないか確認してください。
- ●異常のない状態でこの信号が出力される場合は強制空冷等の冷却を施してください。
- ●この信号が出力されない状態では連続駆動が可能です。

10.機械原点検出機能

MCC05v2の機械原点検出型式は、ORG-0,1,2,3,4,5,10,11,12の計9種あります。

各工程についての詳細説明は、10-2.以降に行います。ORG-0 \sim 5,11,12 の各工程では 1 度検出された機械原点の ADDRESS を記憶し、以後の機械原点検出を短時間で行う機能が付加されています。この為 MCC05 12 内部に検出 FLAG を用意しており、この FLAG が ON の場合は、機械原点近傍(原点+OFFSET PULSE)まで ABSOLUTE INDEX DRIVE で移動し、その後 10-2.以降に示す工程の DRIVE を行います。

FLAG が OFF の場合は ABSOLUTE INDEX DRIVE を行わず各工程の DRIVE を直接行います。

*検出 FLAG ON 条件

ORG DRIVE によって正常に機械原点が検出された時。

*検出 FLAG OFF 条件

RESET時。

全 DRIVE に於いて FSSTOP により DRIVE を停止した時(COMPARATOR の一致出力による即時停止を含む)。全 DRIVE に於いて LIMIT 停止型式が即時停止設定時、LIMIT により停止した時。

ORG DRIVE を STOP 等で途中停止した時(応用機能である DEND ERROR、ORIGIN ERROR 発生時を含む)。 前回の ORG DRIVE と異なる ORG DRIVE を起動した時。

ADDRESS が+8,388,607 ~ -8,388,607 の範囲を越えた時。

ORIGIN FLAG RESET COMMAND 又は SPEC INITIALIZE4 COMMAND を実行した時。

- ・検出 FLAG が ON の時に戻る機械原点近傍 ADDRESS は MCC05v2 内部で管理されており USER は何も考慮 する必要はありません。又、ADDRESS INITIALIZE COMMAND により ADDRESS を更新しても機械原点近傍 ADDRESS も同時に更新されるので物理的な位置は保存されます。
- ・機械原点近傍 ADDRESS は ORG 型式により異なります。
 ORG-0 ~ 3,11,12 型式は機械原点検出終了位置+OFFSET PULSE の位置が機械原点近傍 ADDRESS となります。
 ORG-4,5 型式は NORG 信号検出位置+OFFSET PULSE の位置が機械原点近傍 ADDRESS となります。
 尚、OFFSET PULSE は 0 ~ 255PULSE の範囲内で OFFSET PULSE SET COMMAND により指定します。
 RESET 時は、OFFSET PULSE は 0 となります。
- ・回転系等の様な絶対 ADDRESS が無意味となるシステムの場合、ORIGIN FLAG RESET COMMAND により検出 FLAG をクリアして下さい。

10-1.機械原点検出型式

機械原点検出型式は次の9種有り、各々表に示す特徴があります。

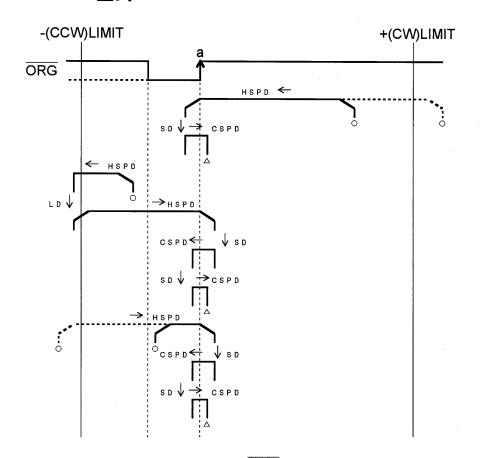
成物が無人出土対応外のもほう人と自て表に分り的数があります。							
検出型式	センサ数	完了時の	センサ	バックラッシュ	標準工程数	精 度	所要時間
		の状況	態	の補正			
ORG-0,11	1個	センサ	OFF	有	2	С	短い
ORG-1	1個	センサ	ON	有	2	С	短い
ORG-2,12	1個	センサ	OFF	有	4	В	長い
ORG-3	1個	センサ	ON	有	4	В	長い
ORG-4	2個	センサ	OFF	有	4又は5	Α	最長
ORG-5	2 個	センサ	ON	有	4又は5	Α	最長
ORG-10	2個	センサ	ON	無	2	С	最短

⁽注) ORG-11,12 は、センサ信号として LIMIT 入力信号を使用します。

·標準丁程数

ORIGIN DRIVE にて起動される CONSTANT SCAN,SCAN,JOG の各 DRIVE 数を示します。 但し JOG DRIVE は

繰り返しの JOG DRIVE 工程を 1 とします。

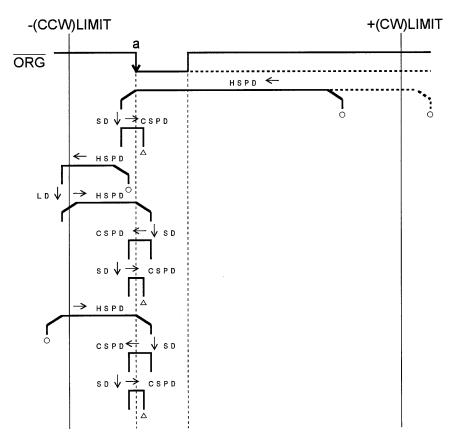

・精度

精度はAが最も高く、B,Cの順となります。

以降の各工程説明図に於ける記号の意味は次の通りです。

以降の合工性	説明凶に於ける記ちの.	
ORG, NORG		センサ信号を示す。(センサ ON で LOW となる)
○ ED		検出開始位置を示す。
△印		検出終了位置を示す。
\rightarrow		
		SCAN DRIVE とその方向を示す。
\rightarrow		
		CONSTANT SCAN DRIVE とその方向を示す。
\rightarrow		
		繰り返し JOG DRIVE とその方向を示す。
_		LIMIT DELAY TIME の間停止する事を示す。
LD		
SD		SCAN DELAY TIME の間停止する事を示す。
JD		JOG DELAY TIME の間停止する事を示す。

10-2.ORG-0 型式

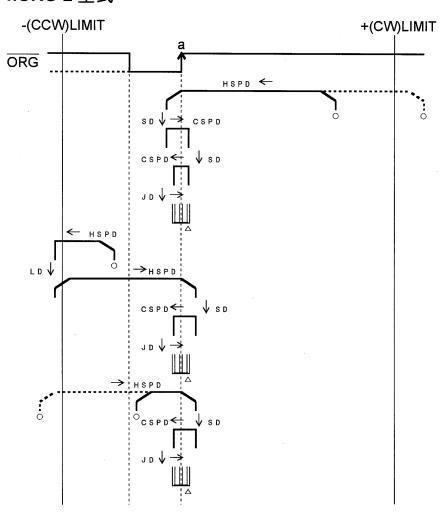


HSPD: HIGH SPEED
CSPD: CONSTANT SPEED
LD: LIMIT DELAY TIME
SD: SCAN DELAY TIME
C: 検出開始位置

△: 検出完了位置

1 つのセンサで行う型式です。 $\overline{\mathsf{ORG}}$ 信号の+(CW)側エッジ(a 点)を検出します。 $\overline{\mathsf{ORG}}$ センサは、1 つのパルス又は、-(CCW)側レベル保持のものを使用します。

10-3.ORG-1 型式

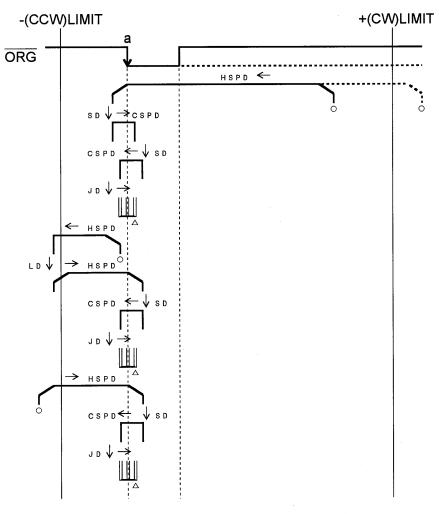

HSPD: HIGH SPEED
CSPD: CONSTANT SPEED
LD: LIMIT DELAY TIME

SD: SCAN DELAY TIME 〇: 検出開始位置

△ : 検出完了位置

1 つのセンサで行う型式です。 $\overline{\mathsf{ORG}}$ 信号の -(CCW)側エッジ(a 点)を検出します。 ORG センサは、1 つのパルス又は、+(CW)側レベル保持のものを使用します。

10-4.ORG-2 型式



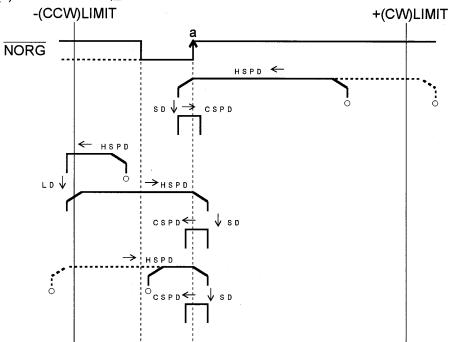
HSPD: HIGH SPEED
CSPD: CONSTANT SPEED
LD: LIMIT DELAY TIME
SD: SCAN DELAY TIME
JD: JOG DELAY TIME
C: 検出開始位置

△ : 検出完了位置

1つのセンサで行う型式です。ORG 信号の+(CW)側エッジ(a 点)を検出します。ORG センサは、 1つのパルス又は、-(CCW)側レベル保持のものを使用します。

10-5.ORG-3 型式

HSPD: HIGH SPEED
CSPD: CONSTANT SPEED
LD: LIMIT DELAY TIME
SD: SCAN DELAY TIME
JD: JOG DELAY TIME
○: 検出開始位置


△ : 検出完了位置

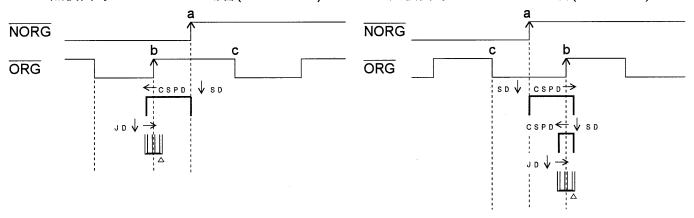
1 つのセンサで行う型式です。 $\overline{\mathsf{ORG}}$ 信号の -(CCW)側エッジ(a 点)を検出します。 ORG センサは、1 つのパルス又は、+(CW)側レベル保持のものを使用します。

10-6.ORG-4 型式

初めに NEAR ORG 工程を、次に ORG 工程を行います。

(1)NEAR ORG 工程

HSPD: HIGH SPEED
CSPD: CONSTANT SPEED
LD: LIMIT DELAY TIME
SD: SCAN DELAY TIME

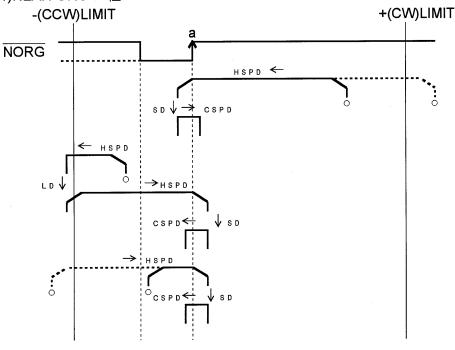

○ : 検出開始位置 △ : 検出完了位置

JD : JOG DELAY TIME

(2)ORG 工程

· a 点検出時 ORG=HIGH の場合(センサ OFF)

· a 点検出時 ORG=LOW の場合(センサ ON)



2 つのセンサで行う型式です。 $\overline{\mathsf{NORG}}$ 信号の+(CW)側エッジ(a 点)を検出した後、 $\overline{\mathsf{ORG}}$ 信号の+(CW)側エッジ(b 点)を検出します。 $\overline{\mathsf{NORG}}$ センサは、1 つのパルス又は -(CCW)側レベル保持のもの、 $\overline{\mathsf{ORG}}$ センサは回転軸のスリット等周期的に信号発生されるものを使用します。

10-7.ORG-5 型式

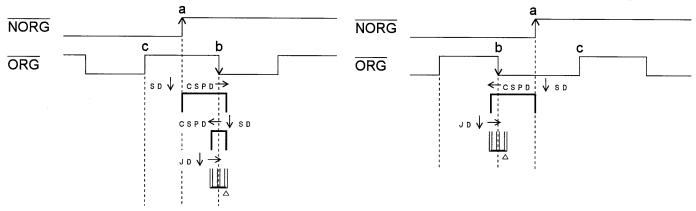
初めに NEAR ORG 工程を、次に ORG 工程を行います。

(1)NEAR ORG 工程

HSPD : HIGH SPEED

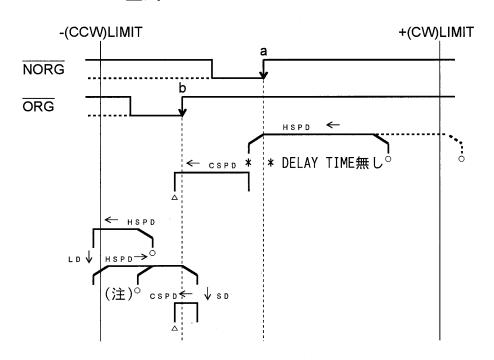
CSPD : CONSTANT SPEED
LD : LIMIT DELAY TIME

SD : SCAN DELAY TIME


JD: JOG DELAY TIME
O: 検出開始位置

△ : 検出完了位置

(2)ORG 工程


· a 点検出時 ORG=HIGH の場合(センサ OFF)

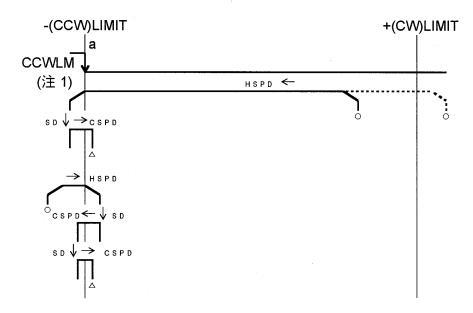
· a 点検出時 ORG=LOW の場合(センサ ON)

2 つのセンサで行う型式です。 $\overline{\mathsf{NORG}}$ 信号の+(CW)側エッジ(a 点)を検出した後、 $\overline{\mathsf{ORG}}$ 信号の -(CCW)側エッジ(b 点)を検出します。 $\overline{\mathsf{NORG}}$ センサは、1 つのパルス又は -(CCW)側レベル保持のもの、 $\overline{\mathsf{ORG}}$ センサは回転軸のスリット等周期的に信号発生されるものを使用します。

10-8.ORG-10 型式

HSPD: HIGH SPEED
CSPD: CONSTANT SPEED
LD: LIMIT DELAY TIME
SD: SCAN DELAY TIME

○ : 検出開始位置 △ : 検出完了位置


(注) NORG 信号と ORG 信号がともに、ON で検出を開始した場合。

2 つのセンサで行う型式です。 \overline{NORG} 信号の+(CW)側エッジ(a 点)又は、 \overline{ORG} 信号の+(CW)側エッジ(b 点)を検出し、b 点へ CONSTANT SCAN DRIVE を行います。 \overline{NORG} , ORG 共、1 つのパルス又は -(CCW)側レベル保持のものを使用します。

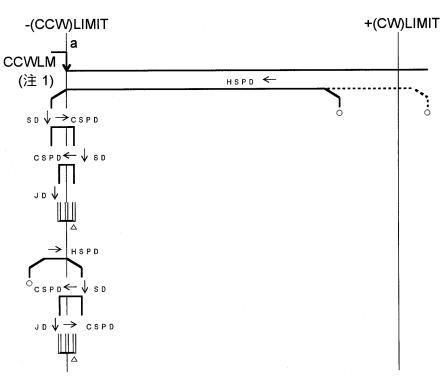
10-9.ORG-11 型式

⚠ 注意

LIMIT 停止の型式によらず**減速停止になります。**この為停止する前に、 メカの限界点へぶつかり機械や加工品などを破損させる恐れがあります。 RATE,HSPD 等を変更した場合停止点が変化します。

HSPD : HIGH SPEED CSPD : CONSTANT SPEED

SD: SCAN DELAY TIME ○: 検出開始位置


△ : 検出完了位置

1 つのセンサで行う型式です。CCWLM 信号の+(CW)側エッジ(a 点)を検出します。ORG センサとして、(CC W)LIMIT センサを使用します。CCWLM 信号は 1 つのパルス又はレベル保持のものを使用して下さい。

(注) 当型式の場合、ORG 信号も有効ですのでアクティブにならない様に注意して下さい。

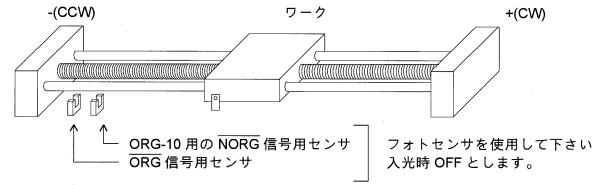
10-10.ORG-12 型式

LIMIT 停止の型式によらず**減速停止になります。**この為停止する前に、メカの限界点へぶつかり機械や加工品などを破損させる恐れがあります。 RATE,HSPD 等を変更した場合停止点が変化します。

HSPD : HIGH SPEED CSPD : CONSTANT SPEED

> SD: SCAN DELAY TIME JD: JOG DELAY TIME 〇: 検出開始位置

△ : 検出完了位置

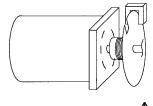

1 つのセンサで行う型式です。CCWLM 信号の+(CW)側エッジ(a 点)を検出します。ORG センサとして、-(CCW)LIMIT センサを使用します。CCWLM 信号は、1 つのパルス又はレベル保持のものを使用して下さい。ORG-11 型式とは、最終工程が繰り返しの JOG DRIVE となっている点が異なります。

(注) 当型式の場合、ORG 信号も有効ですのでアクティブにならない様に注意して下さい。

10-11.センサの配置

(1)ORG-0,1,2,3 の ORG 信号用センサ及び ORG-10 の NORG,ORG 信号用センサは、ワークの移動方向に添って -(CCW)LIMIT 側へ取り付けて下さい。

例)ボールネジ・テーブルの場合



(2)ORG-4,5

- · NORG 信号用センサは、(1)と同様にワークの移動方向に添って、-(CCW)LIMIT 側へ取り付けて下さい。
- · ORG 信号用センサ

次に示す様に、MOTOR の回転軸に取り付けて下さい。

ORG 信号用センサ

フォトセンサを使用して下さい 入光時 ON とします。

MOTOR

- 回転軸に取り付けたスリット付きの円板

(3)ORG-11,12

LIMIT センサ以外必要ありません。これらの型式は CCWLM 信号を原点信号として使用します。 ただし \overline{ORG} 信号も有効状態ですので、 \overline{NOT} ACTIVE を保証しておいて下さい。

10-12.検出条件

- (1)ORG-0,1,2,3,11,12 型式の場合、最高 SPEED にて ORG センサ通過時、ORG 信号は 1ms 以上検出される事。 ORG-4,5,10 型式の場合、最高 SPEED にて NORG センサ通過時、NORG 信号は 1ms 以上検出される事。
- (2)ORG-4,5 型式の場合、a 点, b 点間及び a 点, c 点間の距離は、PULSE 数にして N パルス以上必要です。
 - * N=0.005 × CSPD
- (例) CSPD=5kHz の時

 $N=0.005 \times 5,000=25$

但し CSPD の単位は Hz とし、 N の最低値は 1 とします。 より 25 パルス以上となります。

実際には余裕を取って下さい。

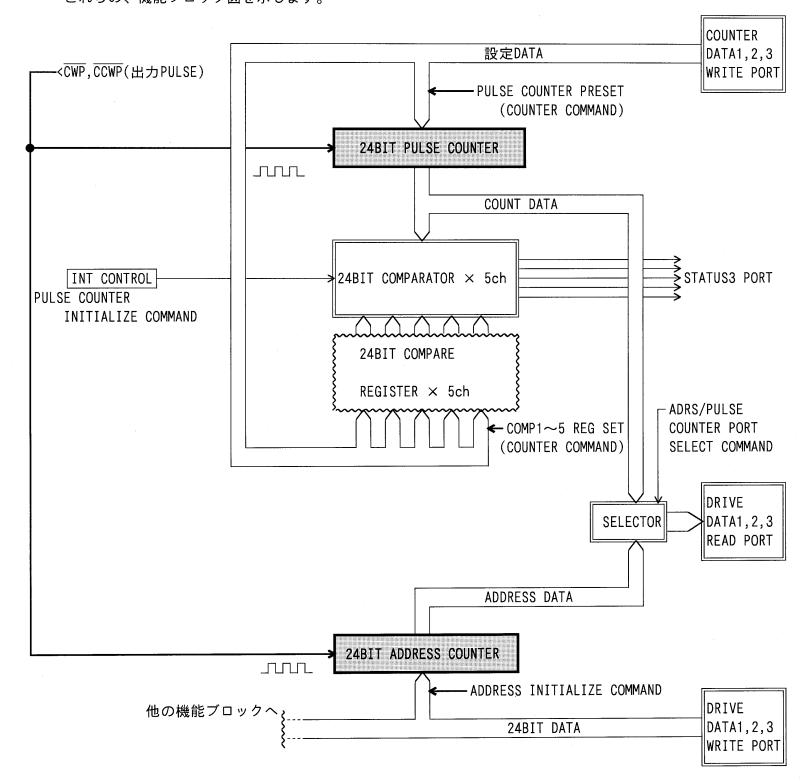
- (3)ORG,NORG の各信号は、チャタリングを除去された信号である事。
 - (フォトセンサ使用の場合、問題はありません。)
- (4)各工程図で示される a 点と+(CW)LIMIT の距離は減速停止するのに充分である事。
- (5)ORG-10 型式で示される a 点と b 点の距離は減速停止するのに充分である事。
- (6)ORG-11,12 型式の場合、a 点とメカの CCW 方向限界までは、減速停止するのに充分である事。

<u></u> 注意

減速停止する前に、メカの限界点へぶつかり機械や加工品などを破損させる 恐れがあります。

RATE, HSPD 等を変更した場合停止点が変化します。

10-13.その他の機能


応用機能として以下の付加機能が用意されています。

- 1. センサ配置を+(CW)側で使用する場合の ORIGIN DRIVE 方向切り替え機能
- 2. ハンチングによる誤動作対策用としての MARGIN TIME 機能
- 3. JOG DRIVE 工程時の SENSOR TYPE 選択機能
- 4. ORIGIN SENSOR が検出出来なかった場合の ERROR 検出機能
- 5. 原点検出完了時と同時に DRST 信号を出力する機能
- これらについての詳細は、取扱説明書〔応用機能編〕を参照下さい。

11. COUNTER 機能詳細

11-1.機能構成図

MCC05 $_{12}$ は、2 個の機能の異なる 24BIT HARD COUNTER を内蔵しています。 これらの、機能ブロック図を示します。

11-2.ADDRESS COUNTER 機能

- (1)ADDRESS COUNTER により MCC05v2 出力 PULSE の絶対 ADDRESS をカウントでき、現在位置を管理 出来ます。
- (2)COUNT DATA は、DRIVE DATA1,2,3 PORT より常時読み出す事が出来ます。(ADDRESS COUNTER PORT が 選択されている場合。) 又、ADDRESS READ COMMAND によっても読み出す事が可能です。 DATA の保証範囲は+8,388,607 ~ -8,388,607 PULSE エリアです。
- (3)COUNTER 値は RESET 時 0 にクリアされます。
 ADDRESS INITIALIZE COMMAND により、任意の値に設定する事も可能です。

11-3.PULSE COUNTER 機能

- (1)PULSE COUNT 機能
 - a.PULSE COUNTER により MCC05v2 の出力 PULSE のカウントを行う事が可能です。
 - b.COUNT DATA は、DRIVE DATA1,2,3 PORT より常時読み出す事が出来ます。(PULSE COUNTER PORT が 選択されている場合。) DATA の保証範囲は+8,388,607 ~ -8,388,607 PULSE エリアで、 ± 8,388,608 でオーバフローとなります。オーバフローになると STATUS3 PORT 内 OVF BIT=1 となります。
 - c.COUNTER 値は RESET 時 0 にクリアされます。 COUNTER COMMAND の PULSE COUNTER PRESET COMMAND により、任意の値に設定する事も可能です。

(2)PULSE COUNT COMPARE 機能

- a.PULSE COUNTER には、5 個の COMPARE REGISTER と COMPARATOR が接続されており、これらにより 任意の COUNT 値を検出する事が出来ます。
- b.COUNTER と REGISTER の一致検出は、STATUS により行います。

STATUS は、スルーモード(COMPARATOR の検出状態をそのまま出力する)とラッチモード(検出状態を保持する)の選択が可能です。

ラッチモードの時、STATUS は、STATUS3 PORT を READ する事により RESET されますが、条件が成立している間(COUNTER と REGISTER の一致中)でも RESET されるモードと RESET されないモードがあり選択出来ます。

詳細は、11-4.COMPARATOR機能詳細を参照下さい。

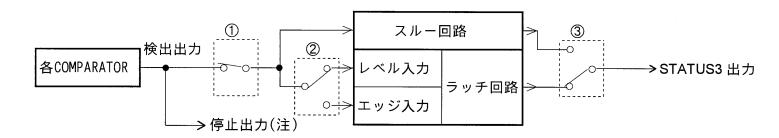
STATUS3 PORT は、5 個の COMPARATOR の OR 出力となっており、出力の許可/禁止を各 COMPARATOR 毎に指定することが可能です。

c.COMPARATOR の一致により PULSE 出力を停止させる事も可能で、即時停止又は、減速停止の選択が可能です。

当機能により PULSE 出力を即時停止した場合、FSEND BIT=1 となり、減速停止した場合、SSEND BIT=1 となります。

- d.PULSE COUNT COMPARE 機能の CONTROL は全て PULSE COUNTER INITIALIZE COMMAND によって行います。COMPARE REGISTER への DATA の設定は COUNTER PORT に対して行います。COUNTER PORT は DRIVE PORT と完全に独立しておりますので COMPARE DATA の書き替えは常時可能です。
- e.COMPARE REGISTER1 の特殊機能

COMPARE REGISTER1 には、他の COMPARE REGISTER には無い特別な機能が割り当てられています。 COMPARE REGISTER1 の一致により下記の機能を自動的に行うことが出来ます。


当機能の CONTROL も全て PULSE COUNTER INITIALIZE COMMAND によって行います。

- ·オートクリア機能
- COMPARE REGISTER1 の一致と同時に PULSE COUNTER の値を 0 クリアします。
- ・リロード機能

COMPARE REGISTER1 の一致と同時に COUNTER DATA1,2,3 PORT に書き込まれている DATA を COMPARE REGISTER1 に再設定します。

11-4.COMPARATOR 機能詳細

PULSE COUNTER 用の 5 個の COMPARATOR の条件検出出力は、以下に示すような機能回路が接続されており、USER 仕様に合わせて制御が可能になっています。

① INT MASK 回路

COMPARATOR の出力をその出口でマスクする回路です。
PULSE の各 COMPARATOR 毎に、マスク設定を行う事が可能です。
当回路の ON/OFF は、INT MASK COMMAND で行います。この COMMAND は、特殊 COMMAND に割り付けられておりリアルタイムで、きめ細かい制御が可能です。

② LATCH TYPE 切り替え回路

COMPARATOR の検出をラッチ出力で使用する場合の、ラッチトリガ・タイプを選択します。 5 個の PULSE COUNTER COMPARATOR のタイプ選択は共通のものとなります。

トリガ・タイプによりラッチ出力を RESET する条件が次の様に異なります。

- ・レベルラッチを選択した場合
- COMPARATOR の検出出力が<u>発生していない時</u>に、STATUS3 PORT を READ 後 RESET されます。 (初期状態)
- ・エッジラッチを選択した場合
- STATUS3 PORT を READ 後、必ず RESET されます。

当回路の切り替えは、PULSE COUNTER INITIALIZE COMMAND で行います。

③ INT OUTPUT TYPE 切り替え回路

COMPARATOR の検出をそのまま(スルー)出力するか、ラッチされたものを出力するかを選択します。 5 個の PULSE COUNTER COMPARATOR のタイプ選択は共通のものとなります。

当回路の切り替えは、PULSE COUNTER INITIALIZE COMMAND で行います。

(初期設定はラッチです。)

検出をスルー出力とした場合、INT 出力中に COUNTER COMMAND を実行すると 50ns 間出力が OFF になります。

以上の様に「① INT MASK 回路」を除く、設定は全て各 COUNTER INITIALIZE COMMAND で行う為、PULSE 出力動作以前に予め行っておく必要があります。

(注)COMPARATOR による PULSE 出力の停止機能については、上記に説明された機能回路を経由せず直接 PULSE 停止を行います。

以下に当機能に関連する参考項目を示します。

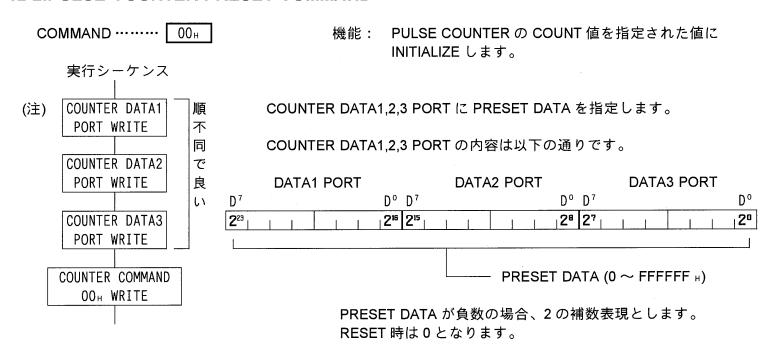
7-5.PULSE COUNTER INITIALIZE COMMAND

7-33.INT MASK COMMAND

14. 各々の信号タイミング

12. PULSE COUNTER COMMAND 説明

12-1.PULSE COUNTER COMMAND 表

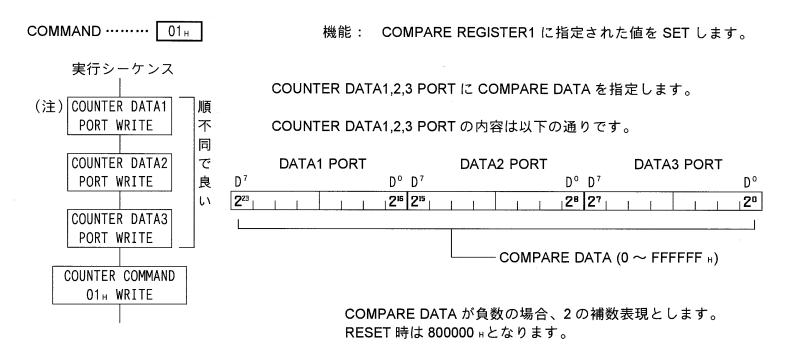

書き込みリクエスト(COMMAND)の実行時間は、REQUEST PORT(マスター)にリクエストの最後のバイトが書き込まれてからコマンドが実行されるまでの時間を表し、通信速度が 625000bps 時の値です。 他の通信速度設定の時には 14-1.シリアル通信時間を参照して下さい。

「通信速度 625000bps 時〕

$D^7D^6D^5D^4D^3D^2D^1D^0$	HEX CODE	COMMAND NAME	実行時間(ms)
x x x x 0 0 0 0	0 0	PULSE COUNTER PRESET	0.30
x x x x 0 0 0 1	0 1	PULSE COUNTER COMPARE REGISTER1 SET	0.30
x x x x 0 0 1 0	0 2	PULSE COUNTER COMPARE REGISTER2 SET	0.30
x x x x x 0 0 1 1	0 3	PULSE COUNTER COMPARE REGISTER3 SET	0.30
x x x x 0 1 0 0	0 4	PULSE COUNTER COMPARE REGISTER4 SET	0.30
x x x x 0 1 0 1	0 5	PULSE COUNTER COMPARE REGISTER5 SET	0.30
x x x x x 0 1 1 0	0 6	設定禁止	
x x x x 0 1 1 1	0 7	設定禁止	
x x x x 1 0 0 0	0.8	設定禁止	

[※] HEX CODE は X を全て 0 とした場合

12-2.PULSE COUNTER PRESET COMMAND



· PRESET DATA の設定例

· PRESEL DATA の設定が	<u> </u>		
PRESET DATA(10進表現)	DATA1 PORT	DATA2 PORT	DATA3 PORT
+8,388,607	7F _H	FF _H	. FF _H
+10	00н	00н	ОАн
±0	00н	00н	00н
-10	FF _H	FF _H	F6н
-8,388,607	80н	00н	01 н

(注)当章で説明される、DATA 及び COMMAND PORT は COUNTER 専用の PORT であり 7.の DRIVE PORT とは異なりますので御注意下さい。

12-3.PULSE COUNTER COMPARE REGISTER1 SET COMMAND

(注)当章で説明される、DATA 及び COMMAND PORT は COUNTER 専用の PORT であり 7. の DRIVE PORT とは異なりますので御注意下さい。

12-4.PULSE COUNTER COMPARE REGISTER2 SET COMMAND

COMMAND …… 02_H 機能: COMPARE REGISTER2 に指定された値を SET します。 実行シーケンス等は、COMPARE REGISTER1 SET COMMAND と同等です。

12-5.PULSE COUNTER COMPARE REGISTER3 SET COMMAND

COMMAND …… 03_H 機能: COMPARE REGISTER3 に指定された値を SET します。 実行シーケンス等は、COMPARE REGISTER1 SET COMMAND と同等です。

12-6.PULSE COUNTER COMPARE REGISTER4 SET COMMAND

COMMAND …… 04_H 機能: COMPARE REGISTER4 に指定された値を SET します。 実行シーケンス等は、COMPARE REGISTER1 SET COMMAND と同等です。

12-7.PULSE COUNTER COMPARE REGISTER5 SET COMMAND

COMMAND …… 05_H 機能: COMPARE REGISTER5 に指定された値を SET します。 実行シーケンス等は、COMPARE REGISTER1 SET COMMAND と同等です。

13. 初期仕様一覧表

POWER ON/RESET 時の初期仕様は、下表の通りです。 各仕様に対して変更が必要な場合のみ、対応 COMMAND を使用して仕様変更を行って下さい。

DATA名称又は仕様	初期仕様	対応COMMAND
URATE(RATE DATA TABLE No.)	No.9(100ms/1000Hz)	RATE SET
DRATE(RATE DATA TABLE No.)	No.9(100ms/1000Hz)	
LSPD	300Hz	LSPD SET
HSPD	3000Hz	HSPD SET
CSPD	300Hz	CSPD SET
SRATE(RATE DATA TABLE No.)	No.9(100ms/1000Hz)	SRATE SET
SLSPD	LSPD 300Hz	
SHSPD	SPD 3000Hz	
DRIVE TYPE	L-TYPE	
LIMIT STOP TYPE	即時停止	SPEC INITIALIZE1
PULSE COUNTERの動作クロック	MCC05v2 出力PULSE	
PLS COMP1~5 STOP ENABLE	停止させない	PULSE COUNTER INITIALIZE
オートクリア機能	行わない	
リロード機能	行わない	
PLS COMP STOP TYPE	即時停止	
STATUS OUTPUT TYPE	各COMPARATORの一致状態をラッチして出力	
STATUS LATCH TRIGGER TYPE	レベルラッチ	
COUNTER SELECT PORT	PULSE COUNTER	各PORT SELECT
現在ADDRESS(ADDRESS COUNTER)	0	ADDRESS INITIALIZE
OFFSET PULSE	0	OFFSET PULSE SET
LIMIT DELAY TIME	300ms	
SCAN DELAY TIME	50ms	ORIGIN DELAY SET
JOG DELAY TIME 20ms		
PULSE COUNTER値	PULSE COUNTER値 0	
PULSE COUNTER COMPARE REGISTER1~5	800000н	PULSE COUNTER COMPARE REGISTER1~5 SET

14. タイミング

14-1.AL シリーズ シリアル通信時間

本製品はシリアル通信を行うため、幾つかの要因により、実行時間に差が生じます。

設計時には次の点に留意して実行時間を確認して下さい。

尚、通信速度=625000bps で且つノイズ等がない通常動作をしている限り、このタイミングは関係ありません。

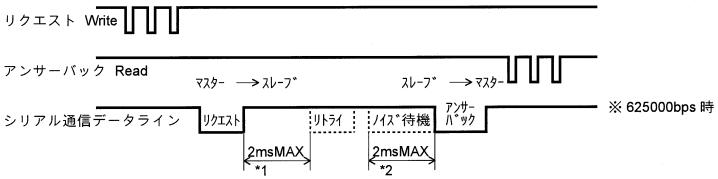
(1)通信速度(ボーレート)

通信速度の設定によって下記の様に時間が加算されます。

通信速度(bps)	9765	39062	156250	625000
書き込み時時間差(ms)	12.60	3.00	0.60	0
読み出し時時間差(ms)	25.20	6.00	1.20	0

(2)リトライ回数

リトライ回数を1回以上に設定した場合、リトライ1回あたりの回数に応じて最大で下記の時間が遅れます。 これはリトライ動作による遅れなので、リトライを有効にしていてもノイズがのらない環境であれば実行時間 に変化はありません。

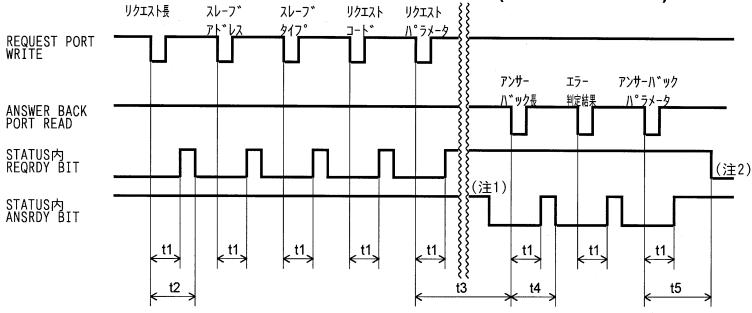

通信速度(bps)		9765	39062	156250	625000
書き込み時遅れ	(ms)	128.00	32.00	8.00	2.00
読み出し時遅れ	(ms)	256.00	64.00	16.00	4.00

※リトライ1回あたりの時間

(3)アンサーバック

スレーブがアンサーバックを返すときにシリアル通信データラインにノイズが入っていると、スレーブはノイズがなくなるまで待機します。この時の最大待ち時間は下記の通りです。

通信速度(bps)		9765	39062	156250	625000
アンサーバック遅れ	(ms)	128.00	32.00	8.00	2.00


*1

この間にスレーブからアンサーバックが返らないとリトライ設定に応じてリトライを実行します。 時間待ち又は指定回数リトライを実行してもアンサーバックが返らない場合は、マスターはユーザへの アンサーバックの中にエラー判定結果としてタイムアウトエラーを通知します。

*2

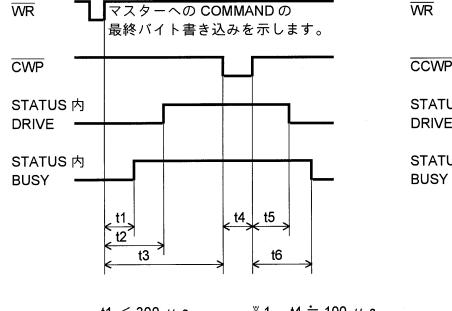
スレーブはアンサーバックを返す時点でシリアル通信データラインの状態を確認し、ノイズ等がないクリヤーな状態になるまで待機します。この待機時間の最大がアンサーバック遅れです。 この待機時間を経過してもシリアル通信データラインがクリヤーにならなかった場合は*1の処理になります。

14-2.リクエスト書き込み、アンサーバック読み出し TIMING(マスターの TIMING)

通信速	Ē度(bps)	9765	39062	156250	625000		
t1		< 200ns					
t2		REQRDY BIT=0 まで(< 30 μ s)					
t3	一括書き込み時	<28.90ms	<7.30ms	<1.90ms	<0.55ms		
t4		ANSRDY BIT= 0 まで(< 30 μ s)					
t5		REQRDY BIT=0 まで(< 30 μ s)					

(注 1)スレーブからアンサーバックを受信すると ANSRDY BIT=0 になります。 (注 2)アンサーバックの最終バイトが読み出されると REQRDY BIT=0 になります。

以下のタイミングで示す[]付きの数値は、応用機能である SOFT LIMIT 機能を有効にしている場合のものです。 []数値のないものは、SOFT LIMIT 機能の有無で変化しません。


又、※1のタイミングは全て AL シリーズの通信速度が 625000bps 時の値を示しています。 他の通信時間設定の場合は 14-1.シリアル通信時間を参照して下さい。

14-3.JOG DRIVE TIMING

例)+(CW)方向 DRIVE 時

14-4.SCAN DRIVE, S-RATE SCAN DRIVE TIMING

例)-(CCW)方向 DRIVE 時

 $\overline{\mathrm{WR}}$ マスターへの COMMAND の 最終バイト書き込みを示します。 **CCWP** STATUS 内 DRIVE STATUS 内 **t1** t2 t3

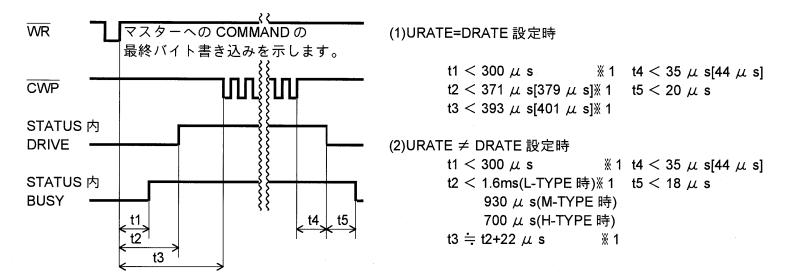
 $t1 < 300 \ \mu \ s$

% 1 t4 \doteqdot 100 μ s

t2 < 334 μ s[342 μ s]* 1 t5 < 23 μ s[31 μ s] t3 < 336 μ s[344 μ s]* 1 t6 < 35 μ s[43 μ s]

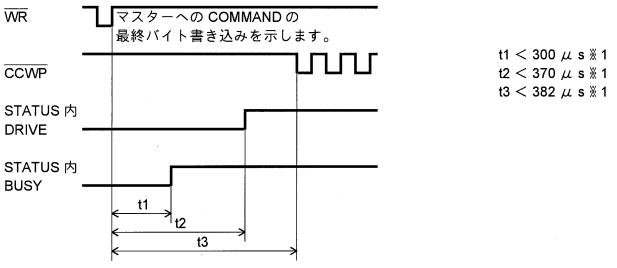
 $t1 < 300 \ \mu \ s$

% 1

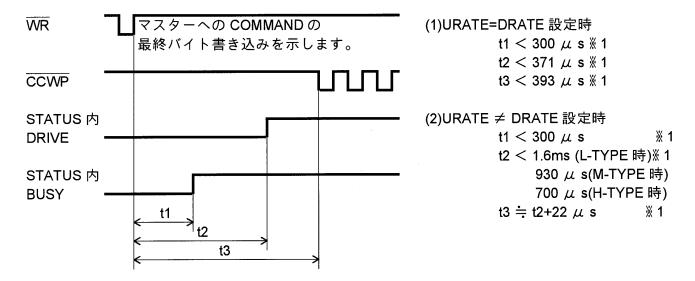

t2 < 343 μ s[375 μ s 注]% 1

t3 < 363 μ s[395 μ s 注]% 1

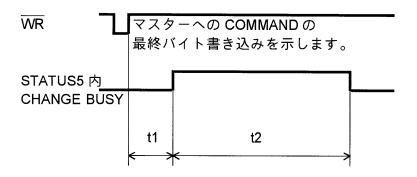
(注)URATE ≠ DRATE 時は、1.6ms


14-5.INDEX DRIVE, S-RATE INDEX DRIVE TIMING

例)+(CW)方向 DRIVE 時



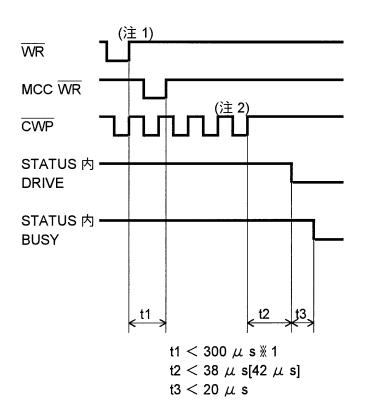
14-6.ORIGIN DRIVE TIMING


例 1)ABSOLUTE INDEX DRIVE(原点近傍 ADDRESS までの RETURN DRIVE)なしの場合の -(CCW)方向 DRIVE 時

例 2)ABSOLUTE INDEX DRIVE(原点近傍 ADDRESS までの RETURN DRIVE)ありの場合の-(CCW)方向 DRIVE 時

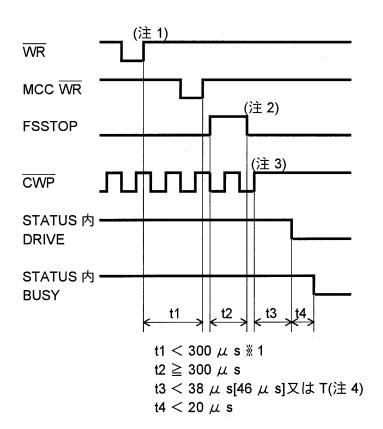
14-7.SPEED CHANGE TIMING

 $t1 < 300 \mu s \% 1$ 351 μ s < t2 < 53.3ms % 1


(注)t2 は、CHANGE COMMAND 書き込み時の動作状態(速度変化中か定速中か)により変化します。 定速中の時最も短くなり、速度変化中は設定されている RATE によります。

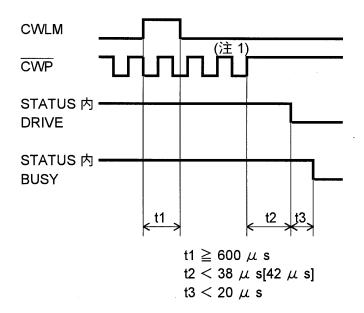
固定 MODE 時は RATE No.が大きいほど、演算 MODE 時は RATE DATA が小さいほど(いずれも速度 変化率が大きくなる)t2の時間は短くなります。

ただし、CHANGE COMMAND 書き込み時の PULSE 周期が t2 より長い場合は、t2 は PULSE 周期以上 となります。


14-8.減速停止 TIMING

例)+(CW)方向 DRIVE 時

14-9.即時停止 TIMING


例)+(CW)方向 DRIVE 時

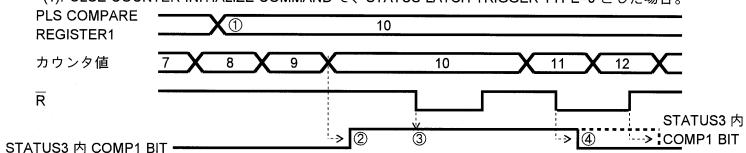
- (注 1)マスターへの SLOW STOP COMMAND の 書き込みを示します。
- (注 2)SLOW STOP COMMAND を本機が受信して から出力される PULSE 数は定速 DRIVE の場合 1PULSE 以内、加減速 DRIVE の場合、減速停止に 必要な PULSE 数となります。
- (注 1)マスターへの FAST STOP COMMAND の 書き込みを示します
- (注 2)COMMAND 又は信号どちらかでよい。
- (注 3)FAST STOP COMMAND 又は信号を本機が 受信してから出力される PULSE 数は 1PULSE 以内です。(PULSE 幅は確保されます。)
- (注 4)停止時の PULSE 周期の 1/2 を T とすると t2は、示された数値かTのいずれか長い方に なります

14-10.LIMIT 停止 TIMING

(1)LIMIT 停止の型式が減速停止の場合 例)+(CW)方向 DRIVE 時

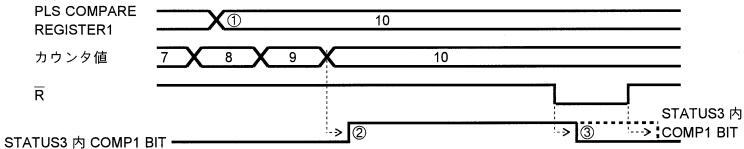
(注 1)LIMIT 信号を受信してから出力される PULSE 数は定速 DRIVE の場合 1PULSE 以内、加減速 DRIVE の場合、減速停止に必要な PULSE 数となります。

(2)LIMIT 停止の型式が急停止の場合

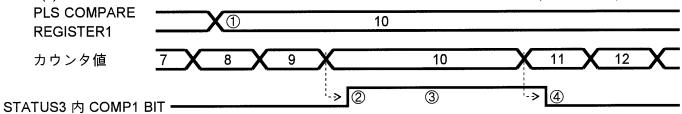

14-9.の TIMING に準ずる。

この時 FSSTOP 信号を CWLM,CCWLM に置き換え、入力信号幅を 600μs 以上とします。

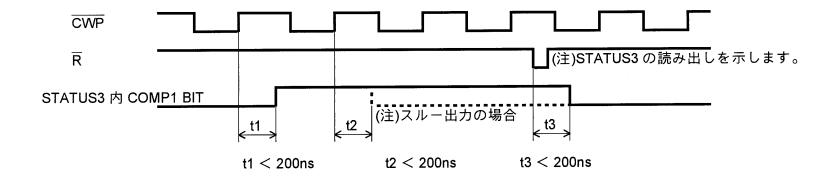
14-11.STATUS3 PLS COMP1 ~ COMP5 TIMING(PLS COMP1 の例)


STATUS3内(COMP1 BIT)は、下記の TIMING で出力/解除されます。

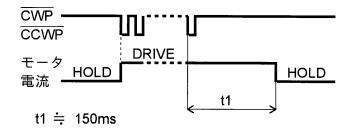
(1)PULSE COUNTER INITIALIZE COMMAND で、STATUS LATCH TRIGGER TYPE=0 とした場合。


- ① : COMPARE REGISTER SET COMMAND による COMPARE 値の書き込みを示します。(例ではカウンタ値を 10 に設定しています。)
- ② : カウンタ値が①で設定した値と一致すると STATUS3 内 COMP1 BIT = 1 になります。
- ③ : カウンター致中は、STATUS3 PORT をアクセスしても STATUS3 内 COMP1 BIT = 0 になりません。
- ④ : カウンタが一致していない時、STATUS3 PORT を READ する事で STATUS3 内 COMP1 BIT = 0 になります。

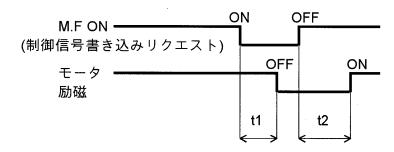
(2)PULSE COUNTER INITIALIZE COMMAND で、STATUS LATCH TRIGGER TYPE=1 とした場合。


- ① : COMPARE REGISTER SET COMMAND による COMPARE 値の書き込みを示します。
- ② : カウンタ値が①で設定した値と一致すると STATUS3 内 COMP BIT = 1 になります。
- ③ : STATUS3 内 COMP1 BIT は、STATUS3 PORT をアクセスするまで保持されます。
 (COMPARE REGISTER とカウンタ値が一致した状態でも、STATUS3 PORT を READ する事で
 COMP1 BIT = 0 になります。)

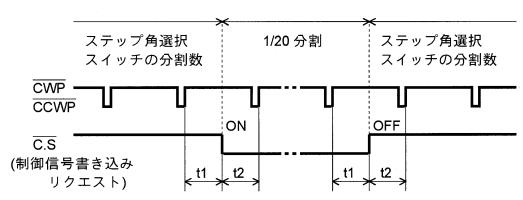
(3)PULSE COUNTER INITIALIZE COMMAND で、STATUS OUTPUT TYPE=1(スルー出力)とした場合。



- ① : COMPARE REGISTER SET COMMAND による COMPARE 値の書き込みを示します。
- ② : カウンタ値が①で設定した値と一致すると STATUS3 内 COMP1 BIT = 1 になります。
- ③ : カウンター致中、STATUS3内 COMP1 BIT = 1のままになります。
- ④ : カウンタが不一致となると、STATUS3内 COMP1 BIT = 0 になります。

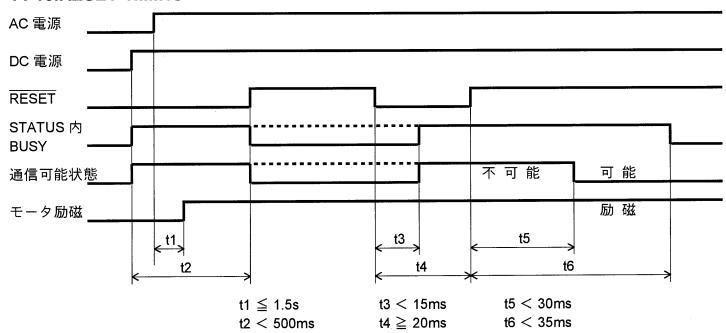

例)+(CW)方向 DRIVE の場合。

14-12.DRIVE/HOLD 電流自動切換タイミング


14-13.モータ励磁停止入力(M.F)信号タイミング

t1 ≦ 5.3ms ½ 1 (t1:モータ出力電流が遮断されるまでの時間)

t2 ≤ 100ms (t2:モータの駆動が可能になるまでの時間)


14-14.ステップ角切替入力(C.S)信号タイミング

t1 ≧ 30ms

(注)C.S 信号によるステップ角切り替えを行う場合は、ドライブパルスの入力前後に t1,t2 の時間が必要です。

14-15.RESET TIMING

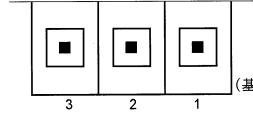
15. コネクタ信号表

15-1.シリアル通信コネクタ(J1,J2)

(1)コネクタ型名 TM5RL-88(ヒロセ)

J2 J1 TM8P-88P,TM11AP1-88(ヒロセ)及び同等品

(2)信号表


ピン	方 向	信号名	説明
1	_	N.C	使用禁止
2		N.C	使用禁止
3	入/出	+RS485	シリアルデータの入出力信号 (ラインドライバ正論理)
4	_	N.C	使用禁止
5	_	N.C	使用禁止
6	入/出	-RS485	シリアルデータの入出力信号 (ラインドライバ負論理)
7	_	N.C	使用禁止
8	_	N.C	使用禁止

- · J1 と J2 は同じ端子配列です。
- ·J1,J2 のどちらに接続しても構いません。
- ・マルチドロップ接続する時に J1 又は J2 コネクタを介して他の機器に分岐接続します。

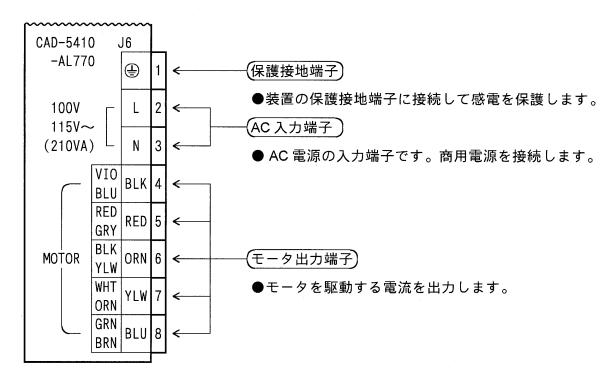
15-2.DC 電源コネクタ(J3)

(1)コネクタ型名 MSTBA2.5/3-G-5.08(フェニックス)

適合ソケット(付属品) MSTB2.5/3-ST-5.08(フェニックス)

適合線材

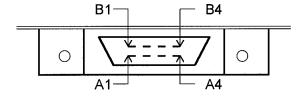
AWG20(0.5mm²)~ AWG12(3.3mm²) AWG20(0.5mm²)~ AWG15(1.5mm²) :デェジチェーン時


適合ソケット(付属品ではありません)

【(基板外側から見た図)

(2)信号表

ピン	方 向	信号名	説 明
1	_	N.C	N.C
2	_	GND	電源 GND
3	入	+24V	DC +24V 電源

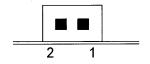

15-3.AC 入力・モータ出力端子台(J6)

15-4.ユーザ I/O コネクタ(J4)

(1)コネクタ型名 FCN-365P008-AU(富士通)

適合ソケット(付属品) FCN-361J008-AU(富士通)

(2)信号表

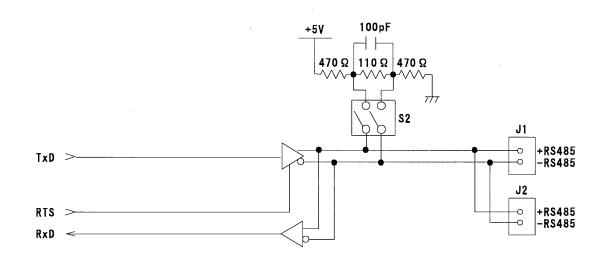

※信号は全てカプラ絶縁されています。

ピン	方向	信号名	説明		ピン	方向	信号名	説明
A1	_	GND	リターン GND	(注 1)	B1	入	CWLM	+(CW)方向 LIMIT 信号 (注 2)
A2	入	CCWLM	-(CCW)方向 LIMIT 信号	(注 2)	B2	入	NORG	機械原点近傍信号
А3	入	ORG	機械原点信号		В3	入	SENSOR	SENSOR DRIVE のセンサ信号
A4	入	FSSTOP	即時停止入力	(注 2)	B4	入	RESET	リセット入力

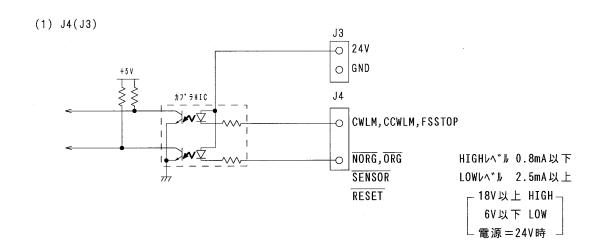
- (注1)DC+24V 電源の GND と内部で接続されています。
- (注 2)ACTIVE OFF 入力となっているので、信号を使用しない場合でも信号を NORMAL ON 状態(GND と接続)に しないとパルス出力しません。

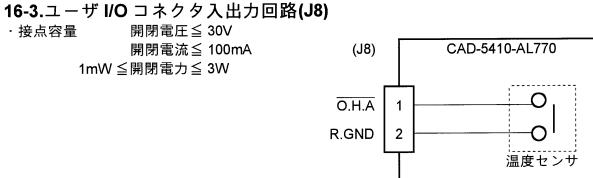
15-5.ユーザ I/O コネクタ(J8)

(1)コネクタ型名 53426-0210(モレックス)


適合ソケット(付属品) 51103-0200(モレックス) 適合コンタクト(付属品) 50752-8100(モレックス) 3 個

(2)信号表

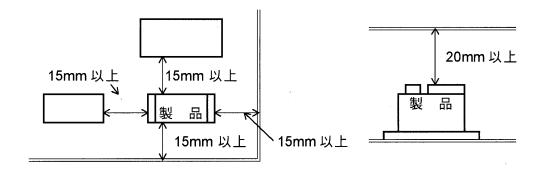

ピン	方向	信号名	説明
1	圧	O.H.A	過熱警告信号出力
2	_	R.GND	リターン GND


16. 入出力回路

16-1.シリアル通信コネクタ等価回路(J1,J2)

16-2.ユーザ I/O コネクタ入出力回路(J4)

17.取付

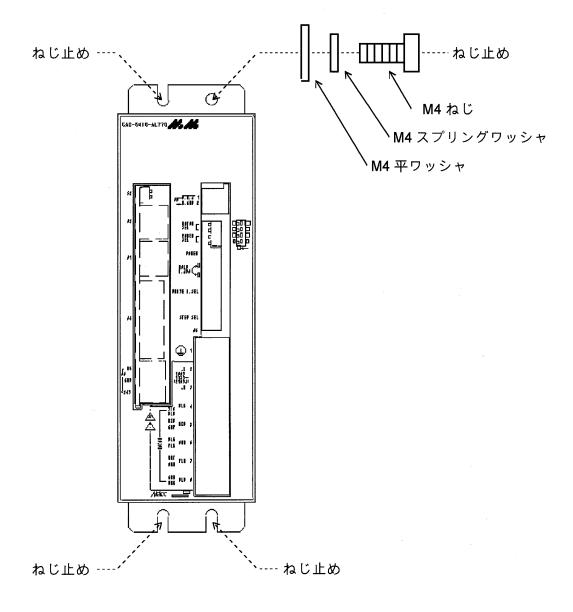

17-1.取付条件

▲ 警告

過熱により、火災のおそれがあります。

不燃物に取り付けて下さい。可燃物から離して下さい。

- (1)本製品は屋内で使用される機器組み込み用に設計・製造されたものですので、次のような環境に設置してください。
- ●屋内(日光が直接あたらない場所)
- ●周囲温度や湿度が仕様値の範囲内の場所
- ●腐食性ガス、引火性ガスのない場所
- ●ちり、ほこり、塩分、鉄粉がかからない場所
- ●製品本体に直接振動や衝撃が伝わらない場所
- ●水、油、薬品の飛沫がかからない場所
- (2)製品と他の機器および構造物とは 15mm 以上離して取り付けてください。



- (3)放熱を考慮した取り付けをしてください。
- ●周囲の間隔を大きく開けたり、ファンを設置したりして、対流により熱がこもらないようにする。
- ●金属等の良熱伝導体に密着して取り付ける。
- (4)上に乗ったり、物を載せたりしないでください。

17-2.取付方法

次のものが必要です。

- M4 ねじ (長さ 8mm 以上) ----- 4 個 ● M4 スプリングワッシャ ------ 4 個 ● M4 平ワッシャ ------ 4 個
- (1)丸穴を仮止めします。
- (2)切りかき部 3 点を止めます。
- (3)丸穴を止めます。

18.接続

18-1.AC 入力・モータ出力端子台(J6)との接続例

▲ 警告

感電のおそれがあります。 主電源を[OFF]にしてください。

▲ 警告

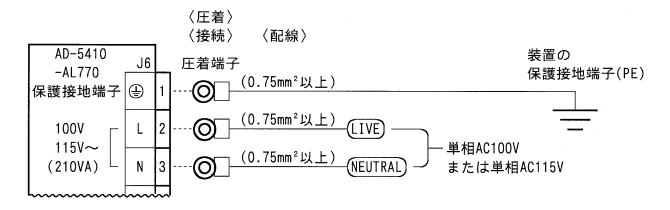
感電のおそれがあります。

保護接地端子 ④ を確実に接地してください。

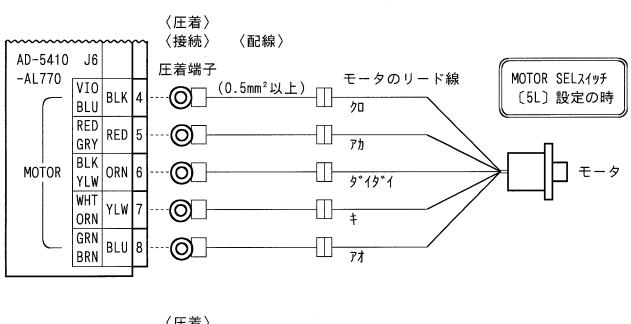
▲ 警告

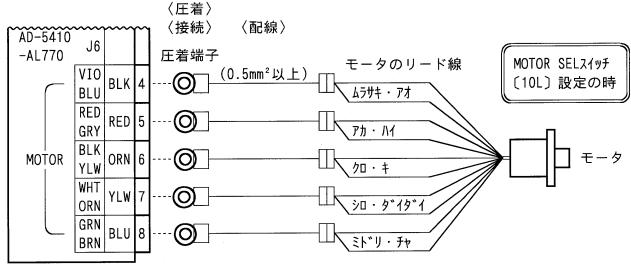
感電、火災のおそれがあります。

電源線やモータ線を無理に曲げたり、引っ張ったり、はさみ込んだりしないでください。


⚠ 注意

接続をあやまると、モータ破損のおそれがあります。 モータ配線は正しく接続してください。


次のものが必要です。


- ●圧着端子(TMEV1.25-3:ニチフ 他相当品) ------8 個
- ●手動工具 AWG22-16 用(NH-11:ニチフ 他相当品) ------1 個
- (1)装置の AC 電源を[OFF]にします。
- (2)配線するケーブルに圧着端子を圧着します。
- (3)端子台カバーをはずして接続します。
- (4)接続終了後に端子台カバーを装着します。

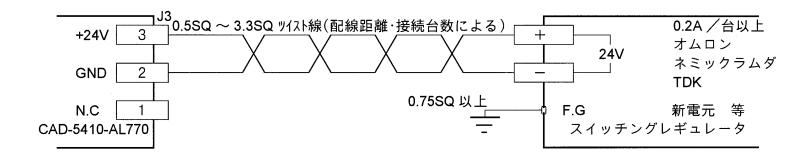
〔保護接地端子·AC 入力端子〕

〔モータ出力端子〕

- ●保護接地端子 ④ は 0.75mm ²以上の線材で必ず装置の保護接地端子(PE)に接地してください。
- ●モータ接続端子(4~8)の色別表示はモータのリード線色です。
- ●配線は図のように右側に引き出して下さい。 左側に引き出すと他のコネクタとショートする危険があります。

18-2.DC 入力電源(J3)との接続例

CAD-5410-AL770 を破損させるおそれがあります。


① 注意 電源極性に注意して配線してください。

⚠ 注意

モータの予期せぬ動作により、機械の破損、けがのおそれがあります。 いつでも非常停止できる状態にしてください。

CAD-5410-AL770 の DC 電源は、DC+24V です。この電源は、カプラ I/O インターフェイス用と内部コントロール用(+24V とは絶縁されています。)として使用されています。

電源としては、電圧+24V、出力容量 0.2A /台以上の安定化電源を御使用下さい。 CAD-5410-AL770 の DC 電源の配線は、0.5SQ 以上の線材を使用し、より線にして下さい。 又、他機器の主回路、動力線とは別束し、50mm 以上離して下さい。



18-3.スレーブへの DC 入力電源供給例

(R) 1

(1)スレーブ電源をネットワーク端に1台配置した場合

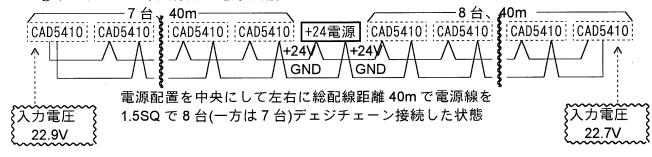
スレーブ電源をネットワーク端に1台配置した構成例では、下図の様に1.5SQ の電源線を使用し、総配線距離20mで15台デェジチェーン接続した条件まで給電できます。

以下にその確認方法を説明します。

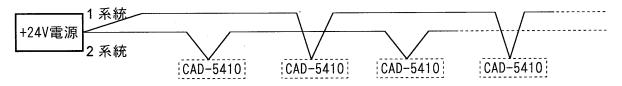
- ①電源を供給するスレーブの消費電流の合計を求めます。 例: CAD-5410-AL770 本体の電源消費電流は 200mA /台より 0.20×15 台= 3.0A
- ②電源供給で使用する電線の総延長を求めます。

総配線距離=20m

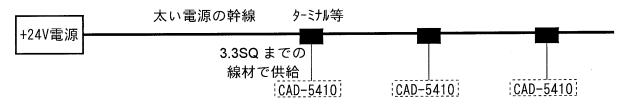
但し、+24V線と GND線の両方あり、直線路で考えると ×2倍の 40m となります。

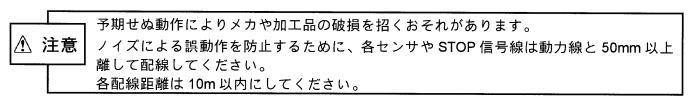

- ③電源ケーブルの配線抵抗を電線カタログで調べ、流す電流から電圧降下の値を調べます。 AWG(15)の導体抵抗で線材の電圧降下を計算します。(カタログでは約 $10\Omega/1000m$) $40m\times(10\Omega+1000m)\times3.0A = 1.2V$
- ④スレーブの入力電源仕様範囲と照合します。 24V±2V の CAD-5410-AL770 仕様に対し 1.2V の電圧降下が見積もれることより、24V-1.2V = 22.8V の電源 電圧が最終端の CAD-5410-AL770 に給電できる結果となりました。

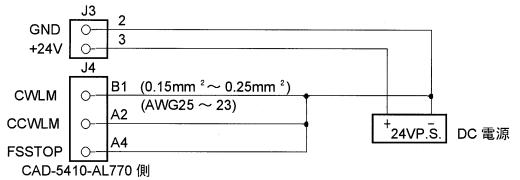
【CAD-5410-AL770 本体電源仕様にて制約される事項】


No.	項目	仕 様	備 考
1	入力電圧	DC+24V	許容範囲 ±2V
2	消費電流	200mA(max)	
3	本体電源コネクタ	AWG12 (約 3.3SQ)	1本接続時
3	の適合最大電線径	AWG(15)(約 1.5SQ)× 2	2 本接続(デェジチェーン)時

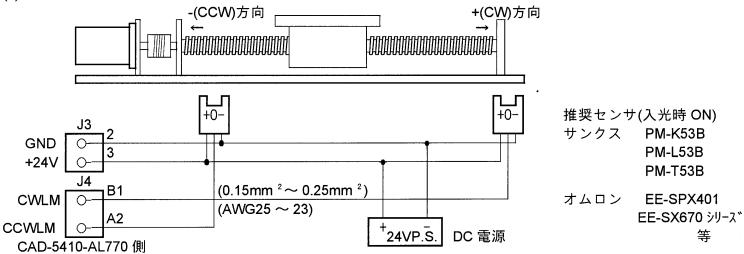
(2) スレーブの入力電圧仕様を満足できない電圧降下が計算された場合例:シリアルライン配線距離よりも電源配線距離の方が長い場合


①ネットワーク中央付近に電源を配置することで全てのスレーブに給 電できるか確認してください。

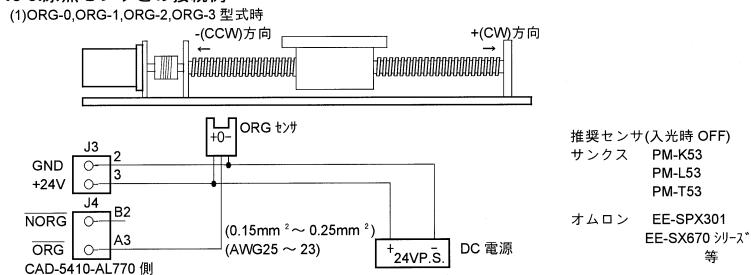

- ②上記①で確認した方法でも給電できない場合は以下を検討してください。
 - ・電源装置の台数を増やして1系統当たりの電源総配線距離を短くする。
 - ・電源の出力から直接スレーブへ配線する本数を増やしてデェジチェーン数を減らす。


・電圧降下の低い太い電源線を幹線として、各スレーブへ幹線ターミナルから直接給電する。

18-4.LIMIT スイッチ又はセンサとの接続例

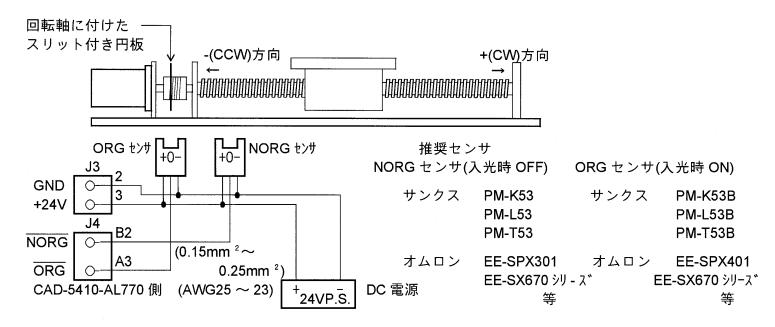


(1)LIMIT 未使用時の接続例

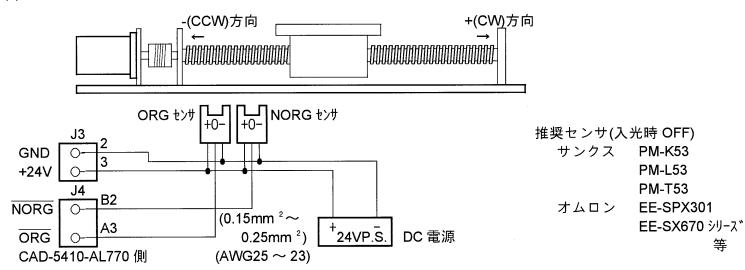


(注)FSSTOP,LIMIT 入力信号は ACTIVE OFF 入力となっており、未接続としますと信号が ACTIVE となり PULSE 出力を行いませんので御注意下さい。

(2)LIMIT 使用時の接続例

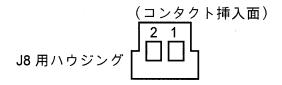


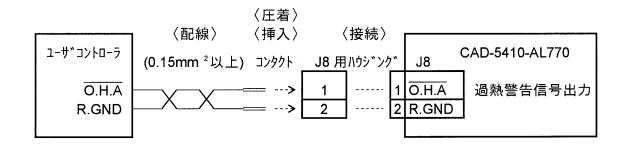
18-5.原点センサとの接続例



等

(2)ORG-4,ORG-5 型式時


(3)ORG-10 型式時



18-6.信号入出カコネクタ(J8)との接続例

次のものが必要です。

- J8 用ハウジング(51103-0200:モレックス) ------1 個(付属品)
- ●コンタクト (50752-8100:モレックス) ------2個(付属品)
- ●手動工具 AWG28-20 用 (57385-5000:モレックス) ------1 個
- (1)配線するケーブルにコンタクトを圧着します。(コンタクトの予備は1個です)
- (2)コンタクトをハウジングに挿入します。 ハウジングと本体のコネクタの番号を対応させて挿入します。
- (3)ハウジングを本体のコネクタに接続します。

- J8 はハウジングがロックされるまでコネクタに差し込んでください。 また、コンタクトがハウジングからはずれていないか確認してください。
- J8 の信号線は、ノイズ源となる機器や電源線、モータ線とは分離して配線してください。

18-7.電源の投入

▲ 警告

感電のおそれがあります。

濡れた手でさわらないでください。

▲ 警告

感電のおそれがあります。

フロントパネルの <u>A</u> 表示は、AC 電源電圧がかかる端子を示しています。 AC 電源投入中および POWER LED 点灯中はさわらないでください。

⚠ 注意

モータの予期せぬ動作により、機械の破損、けがのおそれがあります。 いつでも非常停止できる状態にしてください。

(1)J3 の 2 番と 3 番に接続したケーブルに DC+24V を入力します。

(2)J6 の 2 番と 3 番に接続したケーブルに商用電源(AC100V または AC115V)を入力します。

19. 設定と接続の確認

19-1.チェック項目

- (1)本製品は使用するモータにより、スイッチの設定及びモータの配線が異なりますので、スイッチの設定およびモータの配線が正しいか確認して下さい。
- (2)J6 の保護接地端子 ④ が確実に配線されていることを確認してください。
- (3)J6 に端子台カバーが装着されていることを確認してください。
- (4)通信の設定が AL シリーズ全体の構成を一致していないと正しく通信ができませんので確認して下さい。

チェック項目		チェック	備考
AL シリーズ通信速度設定	S1-7,8:9765 ~ 625000		
AL シリーズアドレス設定	S1-1 ~ 5:1 ~ 31		
終端抵抗設定	S2(ネット両端のみ ON)		
エーな選択フィッチの記点	S3-3:MH/ML		
モータ選択スイッチの設定 	S3-4:10L/5L		, , , ,
京市 DOMED 選択フィッチの訊中	S3-1:L/H		
高速 POWER 選択スイッチの設定	S3-2:LP/HP		
DRIVE 電流選択スイッチの設定	スイッチ No.		
ステップ角選択スイッチの設定	スイッチ No.		
HOLD 電流調整トリマーの設定	トリマー目盛り		
J1,J2 の接続			
J3 の接続	24V,GND		
J4 の接続		·	
	保護接地端子 🕘		
IC O tit (#	AC 入力端子(L, N)		
J6 の接続 	モータ出力端子		
	端子台カバー		

20. 保守と点検

20-1.保守·点検

▲ 警告

感電のおそれがあります。

専門の技術者以外は保守・点検を行わないでください。

▲ 警告

感電のおそれがあります。

濡れた手でさわらないでください。

▲ 警告

感電のおそれがあります。

フロントパネルの \triangle \triangle 表示は、AC 電源電圧がかかる端子を示しています。 AC 電源投入中および POWER LED 点灯中はさわらないでください。

▲ 警告

予期せぬ動作により感電、けが、火災をまねくおそれがあります。 CAD-5410-AL770を分解したり、ヒューズ交換等の修理や改造を行わないでください。

⚠ 注意

本製品の点検や交換作業を行う時はネットワークを停止し、全てのノードの電源を遮断してください。

- (1)保守・点検は専門の技術者が行って下さい。
- (2)定期的に次のことを行うことを推奨します。
 - ●端子台のねじ、コネクタにゆるみはないか。
 - ●ケーブル類に傷、割れはないか。
- (3)故障した場合には当社に返却して修理を受けて下さい。

20-2.トラブルシューティング

ここでは、CAD-5410-AL770を使用する上で考えられるトラブル及びその時のチェックポイントを示します。解決しない場合には、マスターボードのトラブルシューティングも併せて参照して下さい。

	現 象	チェックポイント
1	*通信が正常に出来ない	*RESET に LOW LEVEL が入力されていませんか? *ケーブルは正しく接続されていますか? *本体通信電源(DC)が供給されていないスレーブがネットワークに接続されていませんか? *終端抵抗は正しく設定しましたか?ネットワーク終端のスレーブだけ ON にして下さい。 *通信速度の設定はマスターと一致していますか?ディップスイッチの設定は RESET 時に認識されます*スレーブのアドレス設定は正しいですか?マスターアドレス及び他のスレーブアドレスと重複していないか確認して下さい。 *リクエストのフォーマットは間違っていませんか?*リクエスト長と送信するバイト数は一致していますか? リクエスト長を示すバイトはリクエスト長に含みません。 *S1-6 が ON になっていませんか?
2	*エラー判定結果が返ってくる (1)コード=01 н (2)コード=02 н (3)コード=04 н (4)コード=03 н、05 н	*スレーブタイプはあっていますか? CAD-5410-AL770 のスレーブタイプは 21 Hです。 *リクエストコードはあっていますか? 7-2.リクエスト一覧表で確認して下さい。 *リクエスト長はリクエストコードに対応したものですか? 各リクエストのフォーマットを確認して下さい。 *データがリクエストで要求されている範囲にありません。 各リクエストのフォーマットを確認して下さい。 *マスターのエラーです。マスターの取扱説明書を参照して下さい。
3	*アクセスは正常に行われているようだが PULSE 出力の COMMAND を書き 込んでも PULSE 出力が行われない。 この時 STATUS 内 DRIVE BIT,BUSY BIT が共に 0 である。	*出力 PULSE が 0 の INDEX DRIVE ではありませんか? (指定した絶対 ADDRESS が現在位置の場合など) *STATUS 内の ERROR,LSEND,FSEND の各 BIT を 調べて下さい 万一 1 となっていたら 6-7.項を参照下さい。

	現象	チェックポイント
4	*PULSE 出力は開始したが、いつまでも PULSE 出力が終了しない。	*SCAN,ORIGIN,SENSOR INDEX DRIVE ではありませんか? *INDEX,SENSOR INDEX DRIVE の場合 INCREMENTAL 指定の時 … 設定された PULSE 数が多い。 ABSOLUTE 指定の時 設定された ADDRESS が遠い。 と思われます。この場合は、いずれ停止します。
5	*機械原点検出(ORG DRIVE)が 正常に出来ない。 又は、いつまでたっても終了しない。	*センサの論理(入光時 ON、あるいは入光時 OFF)は合っていますか? *センサの接続(特に GND ライン)は合っていますか?ORG-1,ORG-3 型式の場合、遮光板が長すぎて CCWLM エリア内にエッジ a を作っていませんか? *ORG-2,3,4,5 の場合、メカ振動が影響しますので注意が必要です。振動がある場合は、ORG-0,1 のいずれかを使用するか、ORIGIN DELAY SET COMMANDにより、LD,SD,JD を長く取るか、又は MARGIN TIME(取扱説明書〔応用機能編〕参照)を長く取るようにして下さい。 *ORG センサ内で ORG DRIVE を完了させる為にORG-3 又は ORG-5 を選択した場合 ORG DRIVE完了時、センサエッジaより1PULSE分しかセンサエリア内に入り込んでいない為、わずかなメカの振動でセンサが OFF となってしまう事があります。この場合、ORG DRIVE完了後+(CW)方向へ数 PULSE INDEX DRIVE を行いセンサエリアへ確実に入るようにして下さい。
6	*PULSE COUNTER のカウンタ値を常時 読み出していると、時々カウンタ値が 狂っている様である。	*カウンタ値を上位バイト(2 ²³ ~ 2 ¹⁶)~ 下位バイト(2 ⁷ ~ 2 °)順に読んでいますか? PULSE COUNTER は上位バイトから読み出さないとカウン タ値が狂う事があります。 *コンパイラによっては、最適化の為ソースリスト順 にコンパイルされない場合があります。この場合は、 最適化を禁止してコンパイルして下さい。 C 言語の場合は、サンプルプラグラムを参照下さい。
7	*SPEED DATA の読み出しを行っているが時々 DATA が狂っている様である。	*SPEED DATA を上位バイト(2 ²³ ~ 2 ¹⁶)~ 下位バイト(2 ⁷ ~ 2 ⁰)順に読んでいますか? SPEED DATA は上位バイトから読み出さないと DATA が狂う事があります。No.6 のチェックポイント参照 *DATA 長が 3 バイトを越える様な極低速を読み 出そうとしていませんか? SPEED DATA は、約 9.5Hz 以下の極低速を読み 出す事が出来ません。
8	*STATUS のビットが設定した値と異なる カウンタ値で発生している様である。	*DATA 未設定の PLS COMPARE REGISTER が存在し、 更に PULSE COUNTER のカウンタ値がオーバフロー していませんか? PLS COMPARE REGISTER は、RESET 時オーバ フロー値と同じ 800000 +に INITIALIZE される為、 DATA 未設定の PLS COMPARE REGISTER があると オーバフロー値で STATUS を発生します。 未使用の COMPARE REGISTER の COMP INT は、 PULSE COUNTER INITIALIZE COMMAND で 禁止して下さい。

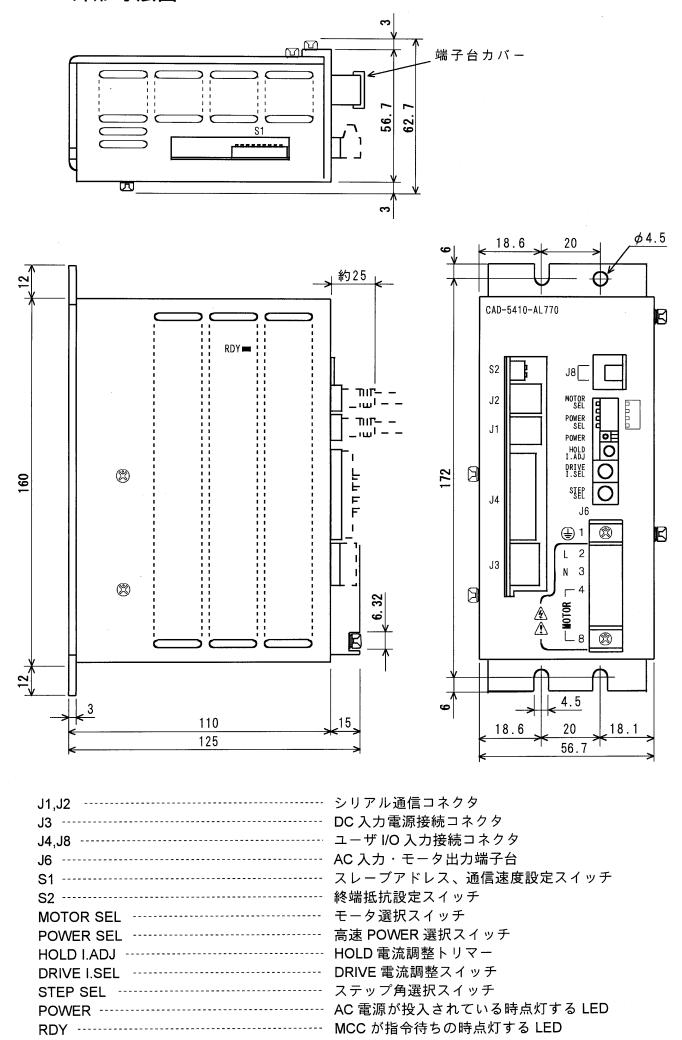
	現象	チェックポイント
9	*出力 PULSE SPEED が設定値と 異なっている様である。	*高速域の SPEED を指定した場合、設定値と 実際の値が異なる場合があります。 詳しくは、9-14.項を参照下さい。
10	*加/減速時定数が URATE,DRATE 設定値と違っている様である。	*選択した DRIVE TYPE と指定した DATA の内容が 異なっていませんか? SPEC INITIALIZE1 で選択した DRIVE TYPE により、RATE 設定時の DATA の内容が 異なりますので注意が必要です。
11	*POWER LED が点灯しない。	*AC 電源の配線ミス、電源電圧不良が考えられます。 *それでも解決しない場合は、製品の故障が考えられるので当社までお問い合わせ下さい。
12	*モータが励磁しない。 (手で簡単に回せる)	*モータとドライバの配線ミスが考えられます。 *M.F 信号(シリアル制御)が入力されていませんか? *HOLD 電流の設定が 0(ゼロ)になっていませんか? *それでも解決しない場合は、ドライバの故障が考えられるので当社までお問い合わせ下さい。
13	*モータが回転しない。 *モータの動作がおかしい。 *モータが脱調する。	*上記2項と同様の項目を確認して下さい。 *モータ選択の設定を間違えていませんか? *DRIVE 電流が小さすぎませんか? *ステップ角の設定を間違えていませんか? *C.S 信号が入力されていませんか? *最高周波数(500kHz)を越えて設定していませんか? 最高速を越えても設定は可能ですが、動作が保証されません。 *モータが故障していませんか? *それでも解決しない場合は、ドライバの故障が考えられるので当社までお問い合わせ下さい。
14	*加速中に脱調する。	*起動パルス速度が高すぎませんか? *加減速時間が短すぎませんか? *高速 POWER 出力の設定が低い出力設定になっていませんか?
15	*モータの発熱が高い。	*DRIVE 電流が適用モータの設定より大き過ぎませんか? *HOLD 電流の設定が高すぎませんか?
16	*O.H.A 信号が出力する。	*ドライバの周囲温度が高すぎませんか?(40 ℃以上) *それでも解決しない場合は、ドライバの故障が考えられるので当社までお問い合わせ下さい。

モータ出力端子のショートがおきますとドライバが故障するおそれがあります。

- ●モータ出力端子と接地(P.E)間のショート
- ●モータ出力端子と電源線のショート
- ●モータ出力端子とモータ出力端子のショート

不具合現象が解決されない場合は、当社までお問い合わせください。

21. 保管と廃棄


21-1.保管

- (1)次のような環境に保管してください。
- ●屋内(日光が直接あたらない場所)
- ●周囲温度や湿度が仕様値の範囲内の場所
- ●腐食性ガス、引火性ガスのない場所
- ●ちり、ほこり、塩分、鉄粉がかからない場所
- ●製品本体に直接振動や衝撃が伝わらない場所
- ●水、油、薬品の飛沫がかからない場所
- (2)上に乗ったり、物を載せたりしないでください。

21-2.廃棄

(1)産業廃棄物として処理してください。

22. 外形寸法図

23. サンプル プログラム

本章では CB-07(ISA マスター)と CAD-5410-AL770(CD スレーブ)と CB-08(I/O スレーブ)を各 1 台接続し、モータと I/O を制御するユーザプログラム例を示します。(ANSI 規格 C 言語)

- ・CB-07 のベース ADDRESS を B910 н(マスターのディップスイッチの設定例)とします。
- ・CAD-5410-AL770 のスレーブアドレスは、1 を使用します。
- ·CB-08 のスレーブアドレスは、3 を使用します。

23-1.AL シリーズ システム設定例

```
/*
                        DEFINITION
#define UC
              unsigned char
#define US
              unsigned short
#define UL
              unsigned long
#define ADR
              0xb910
#define REQP
              ADR + 0 \times 00
#define INIP
              ADR + 0x01
#define ANSP
              ADR + 0x02
#define STSP
              ADR + 0x03
#define GPIP
              ADR + 0x04
#define DUMY
                  0x00
                         /* DUMMY DATA
                                               */
#define ADR1
                  0x01
                         /* CDB ADDRESS
                                               */
#define ADR2
                  0x03
                         /* CB08 ADDRESS
                                               */
#define TYPE_MASTER 0x00
                         /* SLAVE_TYPE(MASTER)(INVALID) */
#define TYPE_CAD
                  0x21
                         /* SLAVE_TYPE(CAD5410) */
                  0x10
#define TYPE_CB08
                         /* SLAVE_TYPE(CB08)
                                               */
#define IN10
                  0x10000 /* SENSOR1(IN10)
                                               */
#define IN11
                  0x20000 /* SENSOR2(IN11)
                                               */
#define ADDRESS_MAP 0x0000000b /* CONNECT CHECK COMPARE DATA */
                             /* VALID SLAVE ADDRESS=01,03,MASTER */
UC trs ptr[20];
                  /* TRANS BUFFER
                                    */
UC rev_ptr[20];
                  /* RECIEVE BUFFER
       cdb_main(void);
void
       cb08_main(void);
void
       xmcc05inz(void);
void
void
       xjog(void);
void
       xscan(void);
void
       xabsindex(void);
void
       xorg(void);
UC
       xsts1read(void);
long
       xcntred(void);
       xdall( UC, UC, UC, UC);
void
       xdcom( UC );
void
       xcall( UC, UC, UC, UC );
void
void
       request(void);
       adr_map(void);
UL
void
       cb08iowrite(US);
       cb08ioread(void);
UL
void
       error_op(void);
```

```
#define reqprdy() while( inp( STSP ) & 0x01 ) /* REQUEST PORT READY WAIT */
#define iniprdy() while( inp( STSP ) & 0x02 ) /* INITIAL PORT READY WAIT */
#define ansprdy() while( inp( STSP ) & 0x04 ) /* ANSWER BACK PORT READY WAIT */
#define xmccrdy() while( xsts1read() & 0x01 ) /* MCC05 READY WAIT */
```

以下、1 軸の場合を説明しますが、CAD-5410-AL770 を複数使用した場合も同様の手順です。 当 PROGRAM 例で使用する RAM エリアを下記のように定義します。

```
/*
                    RAM AREA
                                                   */
UC
     urate; /* UP RATE No. */
             /∗ DOWN RATE No.
UC
     drate;
                                */
            /* LOW SPEED DATA */
/* HIGH SPEED DATA */
/* CONSTANT SPEED DATA */
/* OBJECT ADDRESS DATA FOR INDEX DRIVE */
UL
     lspd;
UL
     hspd;
UL
     cspd:
long
     absdt;
              /* ORG TYPE No. */
UC
     orgno;
UC
     offset;
              /* OFFSET PULSE DATA
                                */
              /* LIMIT DELAY TIME
UC
     ldelay;
                                */
              /∗ SCAN DELAY TIME
UC
     sdelay;
                                */
UC
              /* JOG DELAY TIME
     jdelay;
                                */
```

尚、本章に示す PROGRAM 例はあくまでも参考例であり、必ずしもこれに従う必要はありません。

23-2.AL シリーズ REQUEST 関数例

リクエスト書き込み→アンサーバック読み出しまでを行う関数例です。 ここでは、あらかじめ送信バッファ(trs_ptr)に書き込んだリクエストを送信し、受信したアンサーバックを受信バッファ(rev_ptr)に書き込む仕様とします。

```
/*----*/
/* REQUEST ROUTINE
                                                      */
/*----
void request( void ){
   UC i, cnt;
   cnt = *trs_ptr; /* REQUEST LENGTH SET */
   for( i = 0; i <= cnt; i ++ ){
      reqprdy(); /* REQUEST READY WAIT */
      outp( REQP, *(trs_ptr+i) ); /* REQUEST PORT WRITE */
   }
   ansprdy();
   cnt = inp(ANSP); /* ANSWER BACK PORT READ
                                         */
   *rev_ptr = cnt; /* ANSWER BACK LENGTH SET */
   for( i = 1; i <= cnt; i ++ ){
      ansprdy(); /* ANSWER BACK READY WAIT */
      *(rev ptr+i) = inp(ANSP); /* ANSWER BACK PORT READ
   }
   if( *(rev_ptr+1) ){ /* ERROR COMPARE \neq 0
      error_op(); /* ERROR OPERATION
                                         */
   }
}
```

23-3.AL シリーズ ADDRESS CHECK 関数例

現在接続を確認しているスレーブアドレスを読み出す関数例です。 返値は 4byte データで最上位 bit がスレーブアドレス=31 Hとなる仕様とします。

```
/*----*/
/* AL SERIES ADDRESS CHECK
/*----*/
UL adr_map( void )
{
  UL a;
  *trs_ptr = 0x03;  /* REQUEST LENGTH
*(trs_ptr+1) = 0x00;  /* MASTER ADDRESS
                                          */
                                          */
  *(trs_ptr+2) = TYPE_MASTER; /* SLAVE TYPE (INVALID)
                                          */
  *(trs_ptr+3) = 0xe0; /* ADDRESS CHECK READ REQUEST */
  request();
  *((UC *)&a + 3) = *(rev ptr+2);
  *((UC *)&a + 2) = *(rev_ptr+3);
  *((UC *)&a + 1) = *(rev_ptr+4);
  *( (UC *)&a ) = *(rev_ptr+5);
  return( a );
}
23-4.AL シリーズ INITIALIZE PROGRAM 例
  プログラム実行時に最初に実行して下さい。
  この例は以下の仕様に基づいています。
(1)AL シリーズ設定
  通信速度 … 625000bps
  リトライ回数 … 0回
/* AL SERIES INITIALIZE
/*----
void main( void )
{
  iniprdy();
                      /* INITIAL PORT READY WAIT */
  if( adr_map() != ADDRESS_MAP ) /* CONNECT CHECK
     error_op();
                      /* ERROR OPERATION */
  }
}
```

```
23-5.CAD-5410-AL770 アクセス関数例
  (1)CAD-5410-AL770のドライブポートに一度にデータを書き込む関数例です。
/*----*/
/* DRIVE COMMAND ALL WRITE
/*----*/
void xdall( UC com, UC dt1, UC dt2, UC dt3 )
       *trs_ptr = 0x08;  /* REQUEST LENGTH SET */
*(trs_ptr+1) = ADR1;  /* SLAVE ADDRESS SET */
*(trs_ptr+2) = TYPE_CAD;  /* SLAVE TYPE SET */
*(trs_ptr+3) = 0x10;  /* DRIVE COMMAND ALL WRITE REQUEST SET */
*(trs_ptr+4) = 0x00:
      }
 (2)CAD-5410-AL770のドライブコマンドポートだけにデータを書き込む関数例です。
/*----*/
/* DRIVE COMMAND PORT WRITE
/*----*/
void xdcom( UC com )
{
       *(trs_ptr+3) = 0x11; /* DRIVE COMMAND PORT WRITE REQUEST SET */
       *(trs ptr+4) = 0x00
       *(trs_ptr+5) = com;
request();
                                                      /* MCC DRIVE COMMAND SET*/
/* REQUEST START */
}
 (3)CAD-5410-AL770のカウンターポートに一度にデータを書き込む関数例です。
/*----*/
/* COUNTER COMMAND ALL WRITE */
/*----*/
void xcall( UC com, UC dt1, UC dt2, UC dt3 )
{
       *trs_ptr = 0x08;  /* REQUEST LENGTH SET  */
*(trs_ptr+1) = ADR1;  /* SLAVE ADDRESS SET  */
*(trs_ptr+2) = TYPE_CAD;  /* SLAVE TYPE SET  */
*/
*(trs_ptr+2) = Ox08;  /* SLAVE TYPE SET  */
*/
**COUNTED COMMAND ALL MODITE DESCRIPTIONS OF THE PROPERTY OF
       *(trs_ptr+3) = 0x20; /* COUNTER COMMAND ALL WRITE REQUEST SET
      }
```

```
(4)CAD-5410-AL770 のステータス 1 ポートの内容を読み出す関数例です。
/*----*/
/* STATUS1 PORT READ
/*----*/
UC xsts1read(){
  *(trs_ptr+4) = 0x00
request();
                       /* REQUEST START */
   return( *(rev_ptr+2) );
}
(5)PULSE COUNTER DATA READ PROGRAM 例
   ここでは読み出した PULSE COUNTER の COUNT 値を RETURN 値とする関数例を示します。
/* COUNTER READ
long xcntred( void )
   long
   xdcom( 0xfc );
                         /* PULSE COUNTER PORT SELECT COMMAND OUT*/
  *trs_ptr = 0x04;  /* REQUEST LENGTH SET */
*(trs_ptr+1) = ADR1;  /* SLAVE ADDRESS SET */
*(trs_ptr+2) = TYPE_CAD;  /* SLAVE TYPE SET */
   *(trs_ptr+3) = 0x30; /* DRIVE DATA PORT ALL READ REQUEST SET */
*(trs_ptr+4) = 0x00
                        /* REQUEST START */
   request();
   *( (UC *)&a + 2 ) = *(rev_ptr+2); /* COUNTER MSB IN */
*( (UC *)&a + 1 ) = *(rev_ptr+3);
   *((UC *)\&a) = *(rev_ptr+4); /* COUNTER LSB IN */
   if( (*( (UC *)&a + 2 ) & 0x80 ) != 0 ) /* SIGN BIT ON? */
     *((UC *)&a + 3) = 0xff;
   }else{
   *((UC *)&a + 3) = 0x00;
   return( a );
}
```

```
23-6.CB-08 アクセス関数例
(1)CB-08 の I/O データを読み出す関数例です。
/* CB08 I/O READ
/*----*/
UL cb08ioread( void )
   UL a;
   *trs_ptr = 0x03;  /* REQUEST LENGTH SET */
*(trs_ptr+1) = ADR2;  /* SLAVE ADDRESS SET */
   *(trs_ptr+2) = TYPE_CB08; /* SLAVE TYPE SET */
   *(trs_ptr+3) = 0x60; /* CB08 I/O READ REQUEST SET */request(); /* REQUEST START */
   *((UC *)&a + 3) = *(rev_ptr+2);
   *((UC *)&a + 2) = *(rev_ptr+3);
   *((UC *)&a + 1) = *(rev_ptr+4);
   *( (UC *)&a ) = *(rev_ptr+5);
   return( a );
}
(2)CB-08 の I/O データを書き込む関数例です。
/* CBO8 I/O WRITE
/*----*/
void cb08iowrite( US data )
   *trs_ptr = 0x05;  /* REQUEST LENGTH SET */
*(trs_ptr+1) = ADR2;  /* SLAVE ADDRESS SET */
*(trs_ptr+2) = TYPE_CB08;  /* SLAVE TYPE SET */
   *(trs_ptr+3) = 0x50; /* CB08 I/O WRITE REQUEST SET */
   *(trs_ptr+4) = *( (UC *)&data ); /* OUT20-27 SET */
   *(trs_ptr+5) = *( (UC *)&data+1 ); /* OUT10-17 SET */
                /* REQUEST START */
   request();
}
23-7.エラー時処理ルーチン
   エラーが発生したときの処理を記述する関数です。
   ユーザー各自の処理を記述した後は、プログラムを再起動して下さい。
/* ERROR OPERATION
void error_op( void )
  /*エラー処理ルーチン*/
```

CAD-5410-AL770 の RESET 時に必要に応じて実行して下さい。 この例は以下の仕様に基づいています。

(1)DRIVE 仕様

DRIVE TYPE=L、LIMIT STOP TYPE=即時停止を指定します。

(2)PULSE COUNTER、COMPARATOR 仕様

PULSE COUNTER は MCC05 DRIVE PULSE で動作させるものとし、COMPARE REGISTER1 の一致出力を STATUS に出力する仕様とします。COMPARE REGISTER1 の検出値は、10000(2710 μ)番地とし、COMP STOP TYPE は、減速停止とします。

(3)ADDRESS 仕様

MOTOR の現在 ADDRESS を 1000(3E8 $_{\rm H}$)番地として定義し、PULSE COUNTER にも 1000(3E8 $_{\rm H}$)を PRESET します。

```
/* MCCO5 INITIALIZE
/*----*/
void xmcc05inz( void )
   /** SPEC INITIALIZE1 COMMAND **/
                                 /*
                                        MCCO5 RDY WAIT
   xmccrdy();
   xdall( 0x01, 0x08, DUMY, DUMY ); /* SPEC INITIALIZE1 COMMAND OUT */
   /** PULSE COUNTER INITIALIZE COMMAND **/
   xmccrdy();
                                /*
                                         MCCO5 RDY WAIT
   xdall( 0x02, 0x01, 0x00, 0x00 ); /* PULSE COUNTER INITIALIZE COMMAND OUT */
   /** ADDRESS INITIALIZE COMMAND **/
                                        MCCO5 RDY WAIT
                                 /*
   xdall( 0x03, 0x00, 0x03, 0xe8 ); /* ADDRESS INITIALIZE COMMAND OUT */
   /** COUNTER PRESET COMMAND **/
   xcall( 0x00, 0x00, 0x03, 0xe8 ); /* COUNTER PRESET COMMAND OUT */
   /** COUNTER REGISTER1 SET COMMAND **/
   xcall( 0x01, 0x00, 0x27, 0x10 ); /* COUNTER REGISTER1 SET COMMAND OUT */
}
```

(注)前述の設定内容は全て CAD-5410-AL770 の RESET 時、特定の仕様に INITIALIZE されています。 従って初期仕様に対して変更が必要な場合のみ上述の処理を行って下さい。初期仕様についての詳細は CAD-5410-AL770 の取扱説明書を参照下さい。

23-9.CAD-5410-AL770(MCC05_{v2}) 実動作プログラム例

(1)JOG DRIVE PROGRAM 例

JOG DRIVE に必要な DATA はありません。従って JOG COMMAND で直接起動することが出来ます。

(2)SCAN DRIVE PROGRAM 例

SCAN DRIVE には URATE,DRATE,LSPD,HSPD の各 DATA が必要となる為、これらの DATA を DRIVE 開始前に予め設定しておく必要があります。尚、これらの RATE,SPEED DATA は一度設定が行われていれば変更が必要な場合を除き再設定は不要です。

```
/*
             +SCAN DRIVE
                                                              */
void xscan( void )
{
   /** RATE SET COMMAND **/
                                    /* MCCO5 RDY WAIT
   xmccrdy();
   xdall( 0x06, DUMY, urate, drate ); /* RATE SET COMMAND OUT
   /** LSPD SET COMMAND **/
   xmccrdy();
                                    /* MCCO5 RDY WAIT */
   xdall(0x07, *((UC *)&lspd+1), *((UC *)&lspd+2), *((UC *)&lspd+3)); /* LSPD SET COMMAND OUT */
   /** HSPD SET COMMAND **/
                                    /*
                                           MCCO5 RDY WAIT */
   xmccrdy();
   xdall( 0x08, *((UC *)&hspd+1), *((UC *)&hspd+2), *((UC *)&hspd+3) ); /* HSPD SET COMMAND OUT */
   /** SCAN DRIVE COMMAND **/
                                    /*
   xmccrdy();
                                            MCCO5 RDY WAIT
                                   /* +SCAN DRIVE COMMAND OUT */
   xdcom(0x12);
```

(注)RAM エリア urate,drate には RATE DATA TABLE の No.が、又 Ispd,hspd には Hz 単位で SPEED DATA が格納されているものとします。

(3)絶対指定の INDEX DRIVE PROGRAM 例

絶対指定の INDEX DRIVE には URATE, DRATE, LSPD, HSPD の各 DATA が必要となる為、これらの DATA を DRIVE 開始前に予め設定しておく必要があります。尚、これらの RATE, SPEED DATA は一度設定が行われていれば変更が必要な場合を除き再設定は不要です。

又、DRIVE の目的 ADDRESS は INDEX DRIVE 起動時に設定を行います。この DATA は DRIVE ごとに必ず設定する必要があります。

```
ABSOLUTE INDEX DRIVE
void xabsindex( void )
   /** RATE SET COMMAND **/
                                     /* MCCO5 RDY WAIT
   xdall( 0x06, DUMY, urate, drate ); /* RATE SET COMMAND OUT
   /** LSPD SET COMMAND **/
                                     /*
                                            MCCO5 RDY WAIT */
   xdall( 0x07, *((UC *)&lspd+1), *((UC *)&lspd+2), *((UC *)&lspd+3) ); /* LSPD SET COMMAND OUT */
   /** HSPD SET COMMAND **/
                                     /*
                                             MCCO5 RDY WAIT */
   xdall(0x08, *((UC *)\&hspd+1), *((UC *)\&hspd+2), *((UC *)\&hspd+3)); /* HSPD SET COMMAND OUT */
   /** ABSOLUTE INDEX DRIVE COMMAND **/
                                            MCCO5 RDY WAIT */
                                     /*
   xdall( 0x15, *((UC *)&absdt+1), *((UC *)&absdt+2), *((UC *)&absdt+3) );
                                                           /*ABSOLUTE INDEX DRIVE COMMAND OUT*/
}
```

(注)RAM AREA urate,drate には RATE DATA TABLE の No.が、Ispd,hspd には Hz 単位で SPEED DATA が格納されているものとします。又、absdt には目的 ADDRESS が格納されているものとします。

(4)ORIGIN DRIVE PROGRAM 例

ORIGIN DRIVE には URATE,DRATE,LSPD,HSPD,CSPD,OFFSET PULSE,LDELAY,SDELAY,JDELAY の各 DATA が必要となる為、これらの DATA を DRIVE 開始前に予め設定しておく必要があります。尚、これらの DATA は一度設定が行われていれば変更が必要な場合を除き再設定は不要です。

又、ORIGIN DRIVE 時の機械原点検出型式は DRIVE 起動時に設定を行います。この DATA は DRIVE ごとに必ず設定する必要があります。

```
/* ORIGIN DRIVE
void xorg( void )
   /** RATE SET COMMAND **/
                                /*
                                        MCCO5 RDY WAIT
   xmccrdy();
   xdall( 0x06, DUMY, urate, drate ); /* RATE SET COMMAND OUT
   /** LSPD SET COMMAND **/
   xmccrdv():
                                 /*
                                        MCCO5 RDY WAIT */
   xdall(0x07, *((UC *)\&lspd+1), *((UC *)\&lspd+2), *((UC *)\&lspd+3)); /* LSPD SET COMMAND OUT */
   /** HSPD SET COMMAND **/
                                /*
                                        MCCO5 RDY WAIT */
   xmccrdy();
   /** CSPD SET COMMAND **/
                                 /*
                                        MCCO5 RDY WAIT */
   xmccrdy();
   xdall( 0x1a, *((UC *)&cspd+1), *((UC *)&cspd+2), *((UC *)&cspd+3) ); /* CSPD SET COMMAND OUT */
   /** OFFSET PULSE SET COMMAND **/
   xmccrdy();
                                 /*
                                        MCCO5 RDY WAIT */
   xdall( 0x1b, DUMY, DUMY, offset ); /* OFFSET PULSE SET COMMAND OUT */
   /** ORG DELAY SET COMMAND **/
                                 /*
                                        MCCO5 RDY WAIT */
   xmccrdy();
   xdall( 0x1c, ldelay, sdelay, jdelay ); /* OFFSET DELAY TIME SET COMMAND OUT */
   /** ORIGIN DRIVE COMMAND **/
                                /* MCCO5 RDY WAIT */
   xmccrdv();
   xdall( 0x1e, orgno, DUMY, DUMY ); /* ORIGIN DRIVE COMMAND OUT */
}
```

(注)RAM エリア urate,drate には RATE DATA TABLE の No.が、Ispd,hspd,cspd には Hz 単位で SPEED DATA が、 offset には OFFSET PULSE 数が、更に Idelay,sdelay,jdelay には各々の DELAY TIME DATA が格納されているものとします。

又、orgno には機械原点検出型式が格納されているものとします。

23-10.CB-08 実動作プログラム例

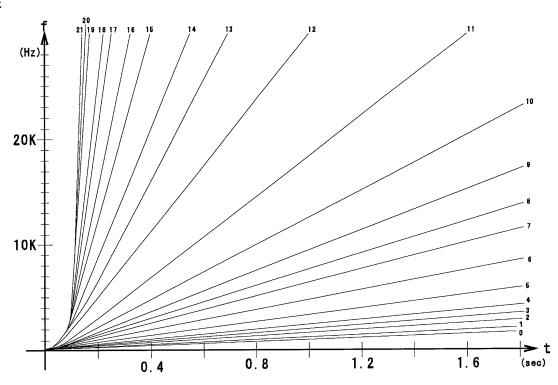
24. DATA 表 24-1.L-TYPE RATE DATA TABLE

ms/1000Hz No. 7.5 5.0 4.0 2.0 1.5

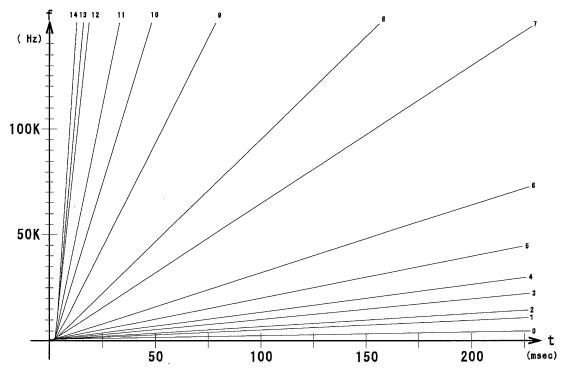
24-2.M-TYPE RATE DATA TABLE

No.	ms/1000Hz
0	50
1	20
2	15
3	10
4	7.5
5	5.0
6	3.0
7	1.5
8	1.0
9	0.5
10	0.3
11	0.2
12	0.1
13 0.075	
14	0.05

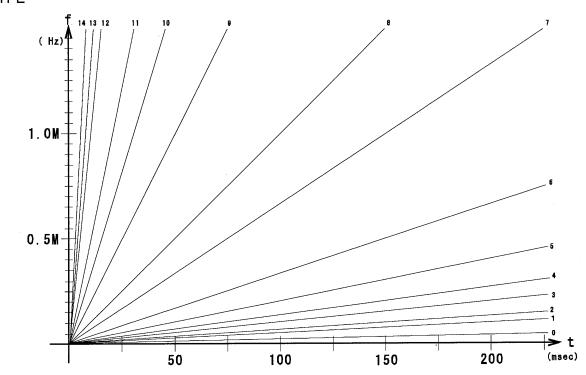
24-3.H-TYPE RATE DATA TABLE


No.	ms/1000Hz	
0	5.0	
1	2.0	
2	1.5	
3	1.0	
4	0.75	
5	0.50	
6	0.30	
7	0.15	
8	0.10	
9	0.05	
10	0.03	
11	0.02	
12	0.01	
13	0.0075	
14 0.005		

(注) ms/1000Hz は、1000Hz 加速又は減速するのに要する平均時間です。


24-4.RATE CURVE GRAPH

1.0


(1)L-TYPE

(3)H-TYPE

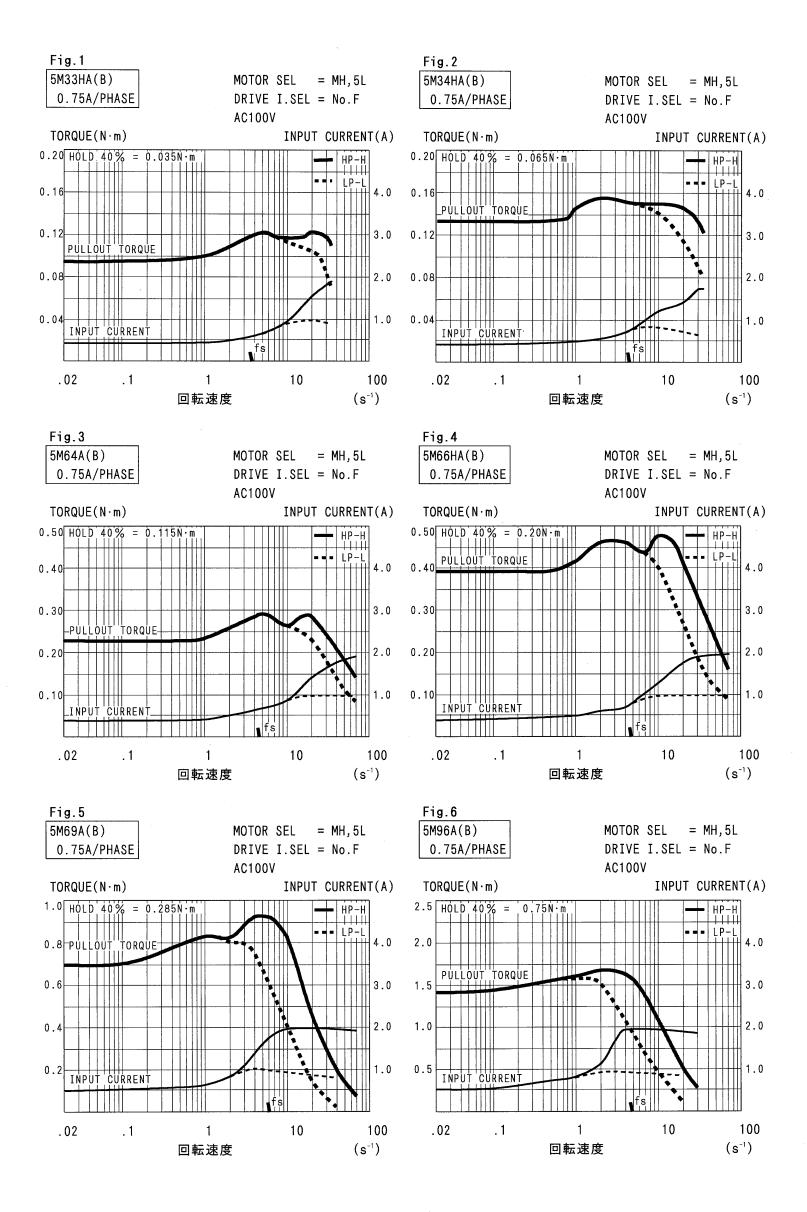
24-5.適用モータ

●下記表に示す5相ステッピングモータ

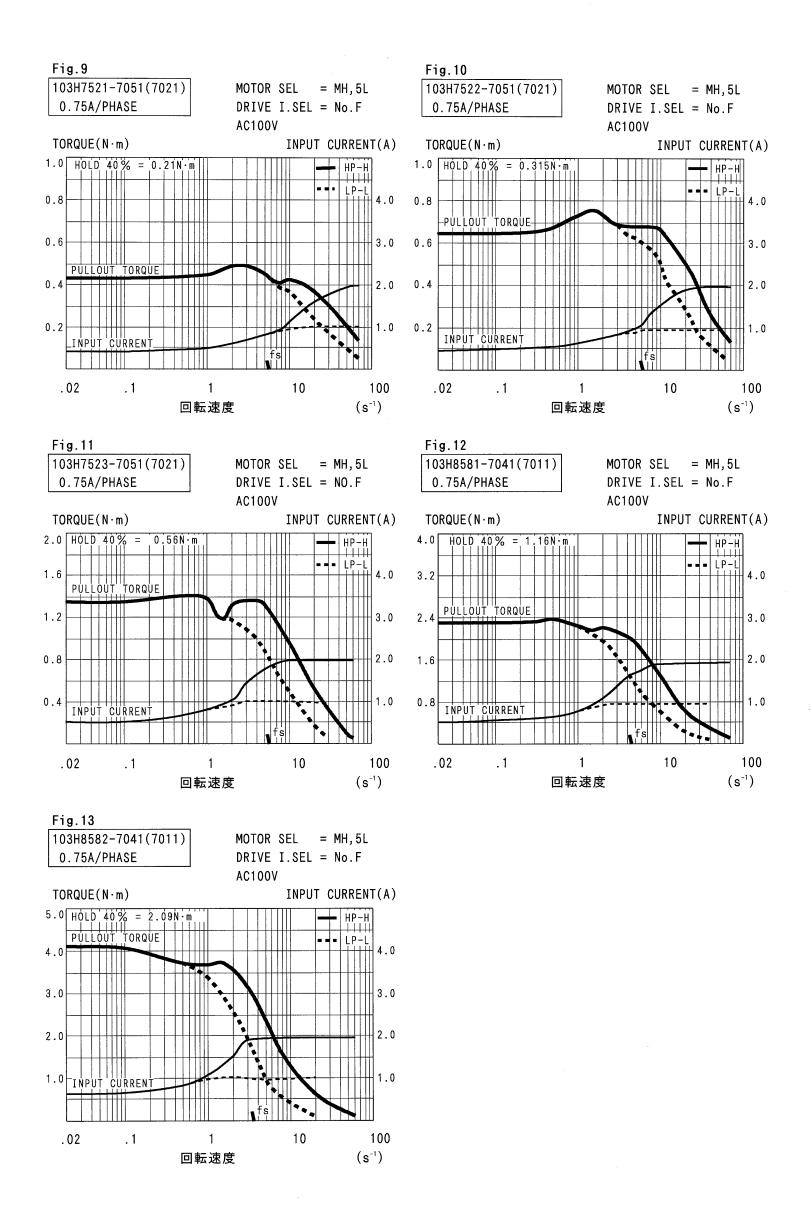
適用モータ		1周 中 十 一 ~		DRIVE I.SEL スイッチNo.設定	MOTOR SEL スイッチ設定 S3-3 : S3-4		トルク特性図 番号
	5M33HA(B) 5M34HA(B)	0.36	0.75	F	OFF (MH)	ON (5L)	Fig.1
山洋電気	5M64A(B) 5M66HA(B) 5M69A(B) 5M96A(B) 5M99A(B) 5M913A(B)	0.72	0.75	F	OFF (MH)	ON (5L)	Fig.3 4 5 6 7 8
	103H7521-7051(7021) 103H7522-7051(7021) 103H7523-7051(7021) 103H8581-7041(7011) 103H8582-7041(7011)	0.72	0.75	F	OFF (MH)	ON (5L)	Fig.9 10 11 12 13
	PX533MH-A(B) PX534MH-A(B) PX535MH-A(B)	0.36	0.75	6	OFF (MH)	0FF (10L)	Fig.14 15 16
 オ	PH544-A(B) PH554-A2(B2) PH564-A(B) PH566-A(B)	0.72	0.75	6	OFF (MH)	0FF (10L)	Fig.17 18 19 20
リエンタ	PH566H-A(B) PH569-A(B) PH596-A(B) PH599-A(B)	0.72 0.72 0.72 0.72	1.3 1.4 1.25 1.15	E F D C	OFF (MH)	0FF (10L)	Fig.21 22 23 24
ルモーター	PK543-A(B) PK544-A(B) PK545-A(B) PK564-A(B) PK566-A(B)	0.72	0.75	6	OFF (MH)	0FF (10L)	Fig.25 26 27 28 29
	PK564H-A(B) PK566H-A(B) PK569-A(B) PK596-A(B) PK599-A(B)	0.72	1.4	F	OFF (MH)	OFF (10L)	Fig.30 31 32 33 34
	出荷時設定				OFF (MH)	ON (5L)	_

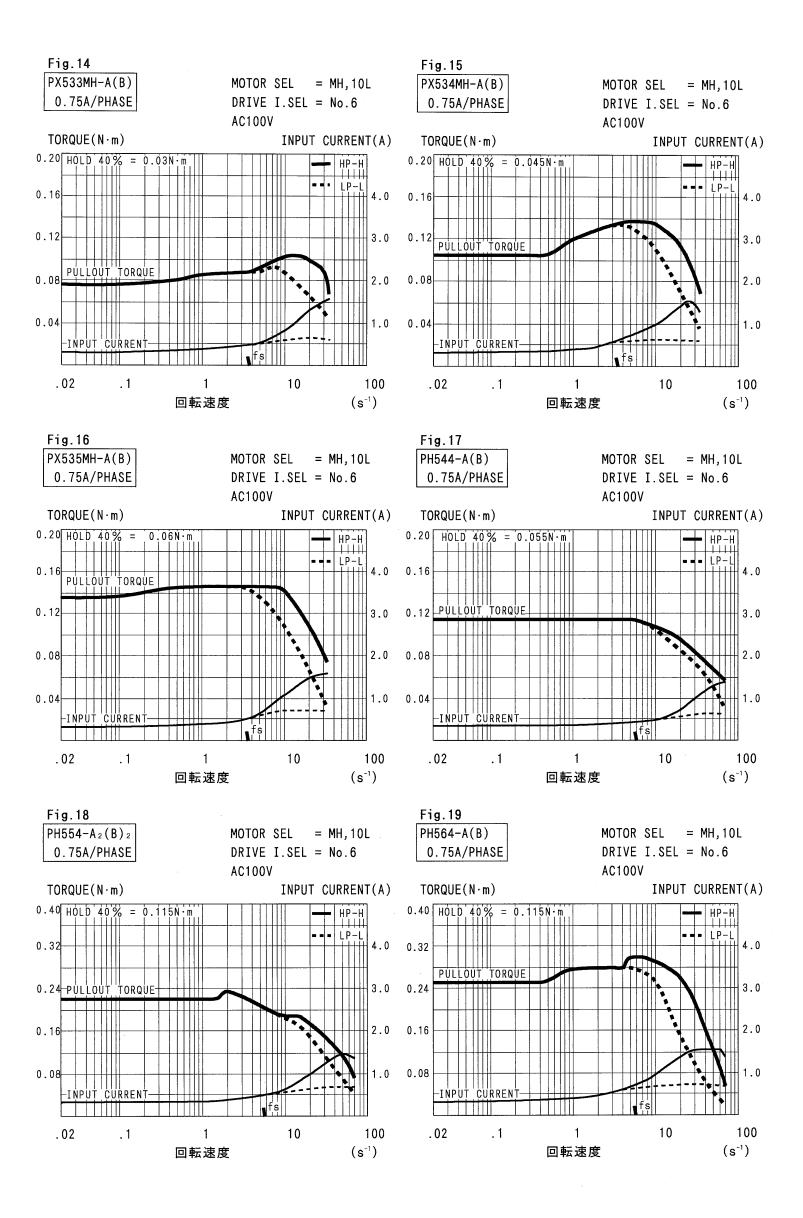
(): 両軸

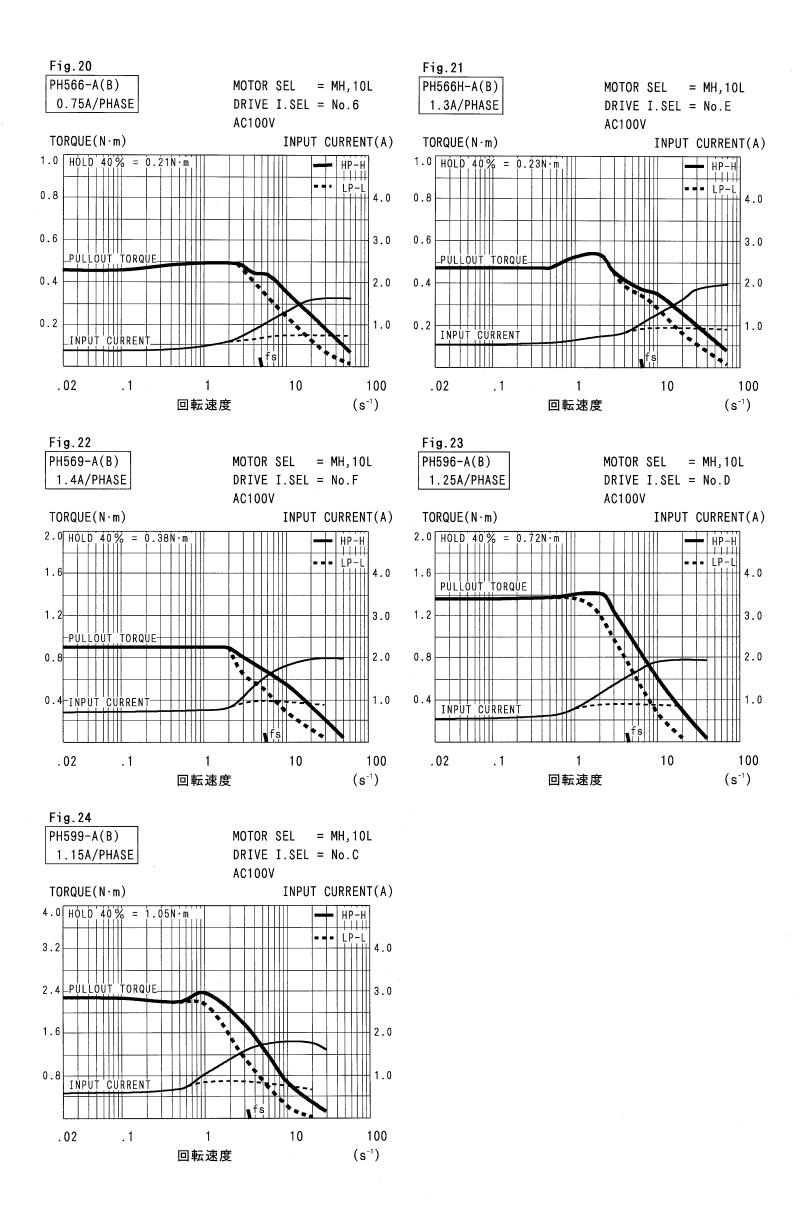
24-6.トルク特性

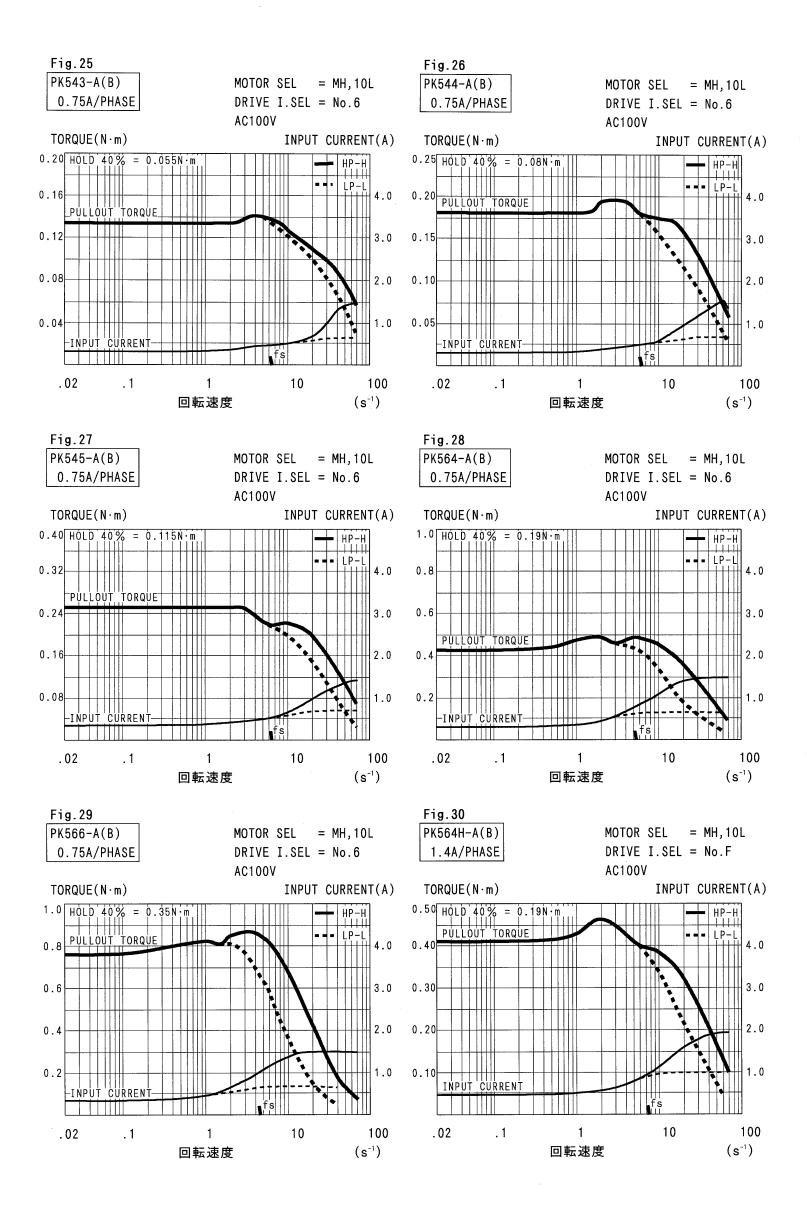

(1)トルク特性表は、モータ回転速度(s^{-1}) 対 トルク(N·m)で表示してあります。 モータ回転速度(s^{-1})とドライブパルス入力周波数(Hz)は、次のように換算されます。

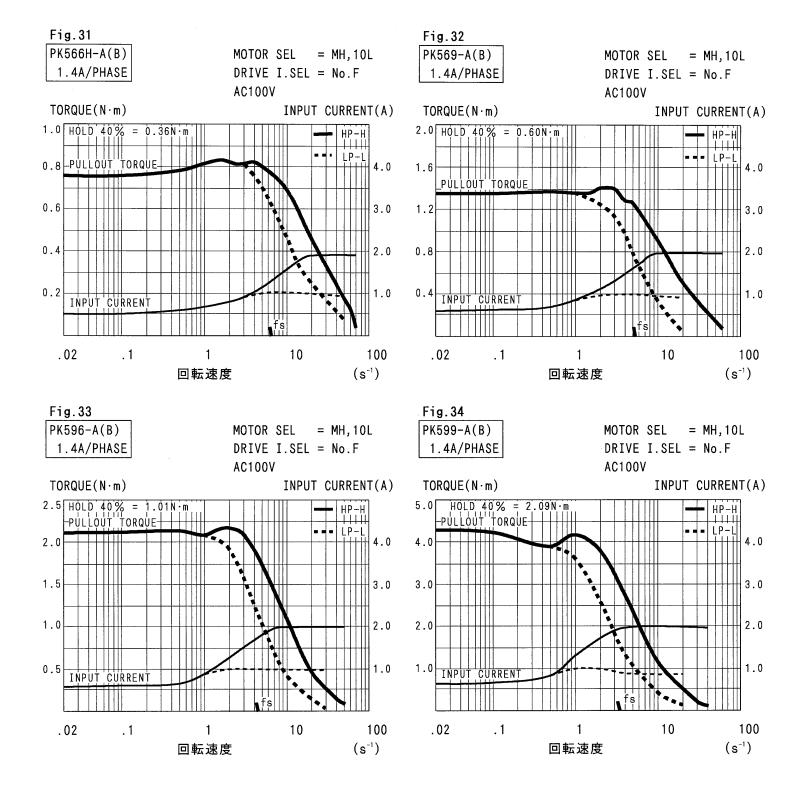

モータ回転速度(s^{-1}) × $\frac{360°}{STEP \, \beta}$ = ドライブパルス入力周波数(Hz)


●モータ最高回転速度


基本角 0.72° モータ: 70s ⁻¹ 基本角 0.36° モータ: 35s ⁻¹


- (2)自起動周波数は「fs」として慣性負荷ゼロの値を示してあります。
- (3)トルクには余裕をみて使用してください。
- (4)ステッピングモータは使用条件によっては温度が高くなる場合があります。 表面温度が+100 ℃をこえる場合は冷却対策を施して+100 ℃以下で使用してください。
- (5)換算值
 - ・トルク 1kg·cm=0.0980665N·m 1N·m=10.1972kg·cm
 - ・回転速度 s ^{−1}=1rps





25. 特別機能

⚠ 注意

設定をあやまると、モータの予期せぬ回転により、機械の破損、けがをまねくおそれが あります。

通常は使用しないでください。

使用する場合は必ず当社までお問い合わせください。

(1)ステップ動作切替機能

AD/MD ステップ動作の選択が可能です。

(2)回転特性切替機能

加減速ドライブ時のモータ振動特性の選択が可能です。

●上記(1)~(2)の機能説明及び使用方法を記載した技術資料を用意しています。 当社までお問い合わせください。

技術資料:「特別機能スイッチについて」

2 6 . CAD-5410-AL770 全 COMMAND 一覧表

26-1.リクエストー覧表

$D^7D^6D^5D^4D^3D^2D^1D^0$	HEX CODE	REQUEST NAME	参照 ページ	備考
00000100	0 4	設定禁止		
00010000	1 0	DRIVE COMMAND 一括書き込み	5 3	
00010001	1 1	DRIVE COMMAND PORT書き込み	5 3	
00010010	1 2	DRIVE DATA1 PORT書き込み	5 4	
00010011	1 3	DRIVE DATA2 PORT書き込み	5 4	
00010100	1 4	DRIVE DATA3 PORT書き込み	5 4	
00010000	2 0	COUNTER COMMAND 一括書き込み	5 5	
00100001	2 1	COUNTER COMMAND PORT書き込み	5 5	
00100010	2 2	COUNTER DATA1 PORT書き込み	5 6	
00100011	2 3	COUNTER DATA2 PORT書き込み	5 6	
00100100	2 4	COUNTER DATA3 PORT書き込み	5 6	
00110000	3 0	DRIVE COMMAND 一括読み出し	5 7	
00110001	3 1	DRIVE DATA1 PORT読み出し	5 7	
00110010	3 2	DRIVE DATA2 PORT読み出し	5 7	
00110011	3 3	DRIVE DATA3 PORT読み出し	5 5	
01000000	4 0	STATUS1 PORT読み出し	5 8	
0 1 0 0 0 0 0 1	4 1	STATUS2 PORT読み出し	5 8	
01000010	4 2	STATUS3 PORT読み出し	5 9	
01000011	4 3	STATUS4 PORT読み出し	5 9	
01000100	4 4	STATUS5 PORT読み出し	5 9	
01010000	5 0	制御信号書き込み	6 0	
0 1 0 1 0 0 0 1	5 1	制御信号指定ビット書き込み	6 0	
0 1 1 0 0 0 0 0	6 0	制御信号読み出し	6 1	
01100001	6 1	制御信号指定ビット読み出し	6 1	
1 1 1 0 0 0 1 0	E 2	設定禁止		
11100100	E 4	設定禁止		
11100110	E 6	設定禁止		
1 1 1 1 0 0 0 1	F 1	設定禁止		

26-2.DRIVE COMMAND の COMMAND 表

*は PULSE 出力を伴う COMMAND です。又、 で示す参照ページは、取扱説明書〔応用機能編〕です。

				参照	
	$D^7D^6D^5D^4D^3D^2D^1D^0$	HEX CODE	COMMAND NAME	ページ	備考
	0000000	0 0	NO OPERATION	3 1	
	00000001	0 1	SPEC INITIALIZE1	3 1	
	00000010	0 2	PULSE COUNTER INITIALIZE	3 2	
	00000011	0 3	ADDRESS INITIALIZE	3 4	
	00000100	0 4	ADDRESS READ	3 4	
	00000101	0 5	設定禁止		
	00000110	0 6	RATE SET	35,19	
	0 0 0 0 0 1 1 1	0.7	LSPD SET	35,20	
	0 0 0 0 1 0 0 0	0.8	HSPD SET	36,20	
	0 0 0 0 1 0 0 1	0 9	設定禁止		
	0 0 0 0 1 0 1 0	0 A	SET DATA READ	3 7	
	0 0 0 0 1 0 1 1	0 B	CW SOFT LIMIT SET	3 6	
	0 0 0 0 1 1 0 0	0 C 0 D	CCW SOFT LIMIT SET 設定禁止	3 6	
	0 0 0 0 1 1 0 1	O E			
	0 0 0 0 1 1 1 1	0 E	IX た赤止 SENSOR INDEX3 DATA SET	3 7	
4	0 0 0 1 0 0 0 0	10	+JOG	3 8	
*	0 0 0 1 0 0 0 0	1 1	-J0G	3 8	
*	0 0 0 1 0 0 1 0	1 2	+SCAN	3 8	
*	0 0 0 1 0 0 1 1	1 3	-SCAN	3 8	
*	0 0 0 1 0 1 0 0	1 4	INCREMENTAL INDEX	3 9	
*	0 0 0 1 0 1 0 1	1 5	ABSOLUTE INDEX	3 9	
,	00010101	16~17	設定禁止		
	0 0 0 1 1 0 0 0	1 8	END PULSE SET	3 8	
	0 0 0 1 1 0 0 1	1 9	ESPD SET	3 8	
	0 0 0 1 1 0 1 0	1 A	CSPD SET	40,20	
	0 0 0 1 1 0 1 1	1 B	OFFSET PULSE SET	4 0	
	0 0 0 1 1 1 0 0	1 C	ORIGIN DELAY SET	4 1	
	0 0 0 1 1 1 0 1	1 D	ORIGIN FLAG RESET	4 1	
*	0 0 0 1 1 1 1 0	1 E	ORIGIN	4 1	
	00011111	1 F	設定禁止		
	00100000	2 0	SPEC INITIALIZE3	3 9	
	00100001	2 1	設定禁止		
	00100010	2 2	RESOLUTION SET	4 0	
	00100011	2 3	PART HSPD BUFFER SET	4 0	
	00100100	2 4	PART HSPD SET	4 1	
	00100101	2 5	INCREMENTAL DATA SET	4 1	
	00100110	2 6	ABSOLUTE DATA SET	4 2	
	00100111	2 7	PART PULSE SET	4 2	
	00101000	2 8	SERIAL INDEX CHECK	4 3	
	00101001	2 9	PART RATE SET	4 4	
	00101010	2 A	SPECIAL SERIAL INDEX CHECK	4 4	
	00101011	2 B	MARGIN TIME SET	4 5	
	00101100	2 C	PEAK PULSE SET	4 5	
	00101101	2 D	SEND PULSE SET	4 6	
	00101110	2 E	SESPD SET	4 6	
	0 0 1 0 1 1 1 1	2 F	SPEC INITIALIZE4	4 7	
*	00110000	3 0	+SPECIAL SCAN1	4 8	
*	00110001	3 1	-SPECIAL SCAN1	4 8	
*	00110010	3 2	+SPECIAL SCAN2	4 8	
*	0 0 1 1 0 0 1 1	3 3	-SPECIAL SCAN2	4 8	
*	00110100	3 4	SPECIAL INCREMENTAL INDEX1	4 9	
*	00110101	3 5	SPECIAL ABSOLUTE INDEX1	4 9	
*	00110110	3 6	SPECIAL INCREMENTAL INDEX2	5 0	
*	00110111	3 7	SPECIAL ABSOLUTE INDEX2	5 0	
	0 0 1 1 0 1 1 1	31	SECTAL ADSOLUTE THREAZ		

	· · · · · · · · · · · · · · · · · · ·			T	
	D ⁷ D ⁶ D ⁵ D ⁴ D ³ D ² D ¹ D ⁰	HEX CODE	COMMAND NAME	参照 ページ	備考
*	00111000	3 8	+SERIAL INDEX	5 1	
*	00111001	3 9	-SERIAL INDEX	5 1	
*	00111010	3 A	+SPECIAL SERIAL INDEX	5 1	
*	00111011	3 B	-SPECIAL SERIAL INDEX	5 1	
*	00111100	3 C	SENSOR INDEX1	5 1	
*	00111101	3 D	SENSOR INDEX2	5 2	
*	0 0 1 1 1 1 1 0	3 E	SENSOR INDEX3	5 2	
		3 F	設定禁止		
*	01000000	4 0	+SENSOR SCAN1	5 3	
*	01000001	4 1	-SENSOR SCAN1	5 3	
		42~4F	設定禁止		
	01010000	5 0	設定禁止		
	01010001	5 1	EXTEND ORIGIN SPEC SET	5 4	
	0 1 0 1 0 0 1 0	5 2	CONSTANT SCAN MAX PULSE SET	5 4	
	01010011	5 3	CHANGE POINT DATA SET	5 5	
	01010100	5 4	CHANGE DATA SET	5 5	
	01010101	5 5	AUTO CHANGE SET	5 6	
		56~5E	設定禁止		
	0 1 0 1 1 1 1 1	5 F	SPEC INITIALIZE5	5 7	
	01100000	60	SRATE SET	42,19	
	01100001	6 1	SLSPD SET	42,20	
	01100010	6 2	SHSPD SET	43,20	
	01100011	6 3	SSRATE ADJUST	43,19	
	01100100	6 4	SERATE ADJUST	44,19	
	01100101	6 5	SCSPD1 ADJUST	44,20	
	01100110	6 6	SCSPD2 ADJUST	45,20	
		67~6E	設定禁止		
ماه	01101111	6 F	SRATE DOWN POINT SET	5 8	
*	01110000	7 0	+ S-RATE SCAN	4 5	
*	01110001	7 1	- S-RATE SCAN	4 5	
*	0 1 1 1 0 0 1 0	7 2	S-RATE INCREMENTAL INDEX	4 6	
*	01110011	7 3	S-RATE ABSOLUTE INDEX	4 6	
		74~CF	設定禁止		
	1 1 0 1 0 0 0 0	D O	DRIVE CALCULATE	5 8	
	1 1 0 1 0 0 0 1	D 1	SRATE DRIVE CALCULATE	5 9	
		D 2~E 1	設定禁止		
	11100010	E 2	ERROR STATUS READ	4 7	1
		E3~EF	設定禁止		
				4 /	

26-3.特殊 COMMAND の COMMAND 表

特殊 COMMAND は常時実行する事が可能です。但し、通常の COMMAND 実行直後(4 μ s 以内)には実行しないで下さい。

$D^7D^6D^5D^4D^3D^2D^1D^0$	HEX CODE	COMMAND NAME	参照ページ	備考
	F1~F3	設定禁止		
11110100	F4	INDEX CHANGE	6 0	
11110101	F 5	RATE CHANGE	6 1	
11110110	F6	設定禁止		
11110111	F 7	SPEED CHANGE	4 7	
11111000	F 8	INT MASK	4 8	
11111001	F 9	ADDRESS COUNTER PORT SELECT	4 9	
11111010	FA	設定禁止		
1 1 1 1 1 1 0 0	FC	PULSE COUNTER PORT SELECT	4 9	
11111101	FD	SPEED PORT SELECT	4 9	
1111110	FE	SLOW STOP	4 9	
1111111	FF	FAST STOP	4 9	

お問い合わせ先

株式会社 メレック 制御機器部 〒193-0834 東京都八王子市東浅川町516-10

技 術 相 談/TEL.(0426)64-5382 FAX.(0426)66-5664

八王子営業所/TEL.(0426)64-5382 FAX.(0426)66-5664

東京営業所/TEL.(042)300-3320 FAX.(042)300-3323 大阪営業所/TEL.(06)6386-5135 FAX.(06)6386-5375