
Melec

Stepping & Servo Motor Controller

C-VX871

C-VX873

Instructions Manual

(For designers' use)

Please ensure to read and understand this Instructions Manual before using the Product. Please keep this Instructions Manual at hand so that it is always available for reference.

((

Introduction

This instructions manual explains the handling of "Stepping Motor and Servo Motor Controller C-VX871, C-VX873" emphasizing the specifications to enable proper and safe use.

The manual is thus intended for designers of control systems using stepping motors or servo motors. Before using the product, read this manual carefully for better understanding.

Keep the manual handy so that you can read it whenever you want.

The C-VX871, C-VX873 allows axes to be controlled independently and therefore referred to each axis as follows:

Product	Number	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11 t h	12th
Name	of axes	axis											
C-VX871	6 axes	X axis	Y axis	Z axis	A axis	B axis	C axis	-	-	-	-	-	-
C-VX873	12 axes	X1 axis	Y1 axis	Z1 axis	A1 axis	B1 axis	C1 axis	X2 axis	Y2 axis	Z2 axis	A2 axis	B2 axis	C2 axis

This manual basically explains only the X axis.

Description of Safety

This product must be handled correctly.

Handling the product incorrectly may cause unexpected accidents resulting in personal injuries or damage to your properties.

Many of those accidents can be avoided if you have advance information on dangerous situations. This manual provides precautions where dangerous situations are predicted. The manual provides the following alert marking and messages for this purpose:

This indicates a hazardous situation that could result in death or serious personal injury if you do not perform the procedure correctly.

This indicates a potentially hazardous situation that could result in personal injury or physical damage if you do not perform the procedure correctly.

Before Use

This product is not designed for use in the equipment related to nuclear power, aerospace equipment, vehicles, marine vessels, medical equipment directly in touch with human body, equipment anticipated to give a serious impact to properties, and other equipment required to provide high reliability.

Take failsafe measures so that the whole system operates safely even if the input power causes an error, a signal line is disconnected, or the main unit fails.

This product is equipped with a LIMIT (overtravel) signal and an FSSTOP signal to prevent mechanical damage.

The initial values of these signals are set to ACTIVE OFF (B contact). Accordingly, even in a system configuration in which the FSSTOP and LIMIT signals are not used, pulses are not output unless NORMAL ON (GND connection) is enabled.

Be sure to use this product within the scope of the specifications described in this instruction manual in accordance with the specification method described therein.

Set up the product before operating it.

Refer to Section 3, "Setting."

When board Contorller (C-VX871,C-VX873) is used on Windows, refer to separate manual "C-VX870 series Device Driver Manual (MN0105,MN0106)".

When board Contorller (C-VX871,C-VX873) is used on any OS other than Windows, refer to separate manual "Technical Data A. (MN0110)"

Introduction
Description of Safety
Before Use

	20.1	Contents	PAGE
1	. OVERV		
	1-1.	Features	4
	1-2.	Product Configuration	4
	1-3.	Example of System Configuration	4
	1-4.	Function Block Diagram	6
	1-5.	Externals of product	9
2	. SPECII	FICATIONS	
	2-1.		11
	2-2.	General Specifications	11
	2-3.	Basic Specifications	12
	2-4.	Applied Functions	14
	2-5.	Input and Output Signal Table	16
		(1) User I/O connector	16
		(2) Special-purpose I/O connector	21
	2-6.	Input and Output Specifications	23
		(1) Output specifications	23
		(2) Input specifications	24
	2-7.	Outside Dimensions	25
3	. SETTII		
	3-1.	Setting the Board Number(S1)	26
4	. CONNEC	CTION	
•	4-1.	Example of user I/O Interface Power Supply Connection	27
	4-2.	Examples of Connection to Drivers	29
		(1) Example of connection to the stepping motor driver	29
		(2) Example of connection to the servo motor driver	30
	4-3.	Examples of Connection to Sensors	31
		(1) Example of sensor attachment (photosensor)	31
		(2) Example of connection to a limit sensor	
		(3) Example of connection to an origin sensor	32
5	. Mainte	enance	
_	5-1.	Maintenance and Inspection	34
		(1) Cleaning method	34
		(2) Inspection method	34
		(3) Replacement method	
	5-2.	Saving and Disposal	34
		(1) Saving method	34
		(2) Disposal method	34
6	. Confo	ming to Europe standards	
_	6-1.	Low Voltage Directive	35
	6-2.	EMC Directive	35

The main parts which revised by this manual

1 . OVERVIEW

1-1. Features

The C-VX871,C-VX873 are controller equipped with six or twelve independently functioning axes. This controller supports servo and stepping motors that can directly be inserted into slots of a PCI bus system conforming to PCI bus specifications R2.2.

The board shape is the universal short card size (107 \times 170) of the PCI bus standard.

The C-VX871,C-VX873 are equipped with our chip controller MCCO7 to enable motor control using simple commands.

C-VX871 enables six independently linear interpolation driving, 2-axis linear interpolation (fixed interpolation-axes) or 2-axis circular interpolation (fixed interpolation-axes) driving.
C-VX873 enables twelve independently linear interpolation driving, 2-axis linear interpolation (fixed interpolation-axes) or 2-axis circular interpolation (fixed interpolation-axes) driving.

The 32-bit width address counter and the maximum output frequency of 6.5 MHz of the MCCO7 enables high-precision, high-speed positioning.

The C-VX871E has equipped with a multi-functional 32-bit pulse counter.

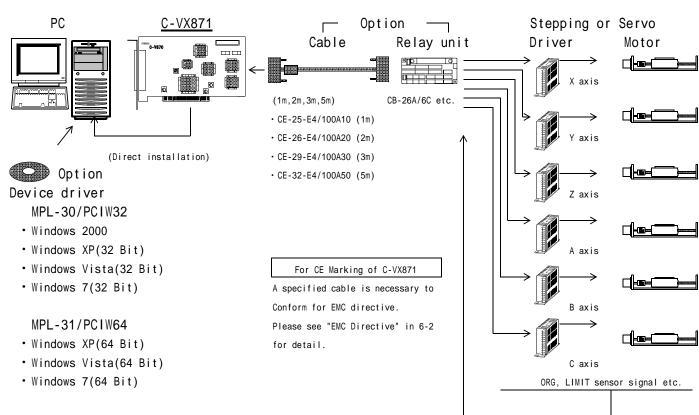
The applications also include interrupt output and external signal output using the comparator function of each counter.

After the command being executed is finished, the commands stored in the reservation register are executed sequentially. Then this function can be allowed continuous drive. (Applied function)

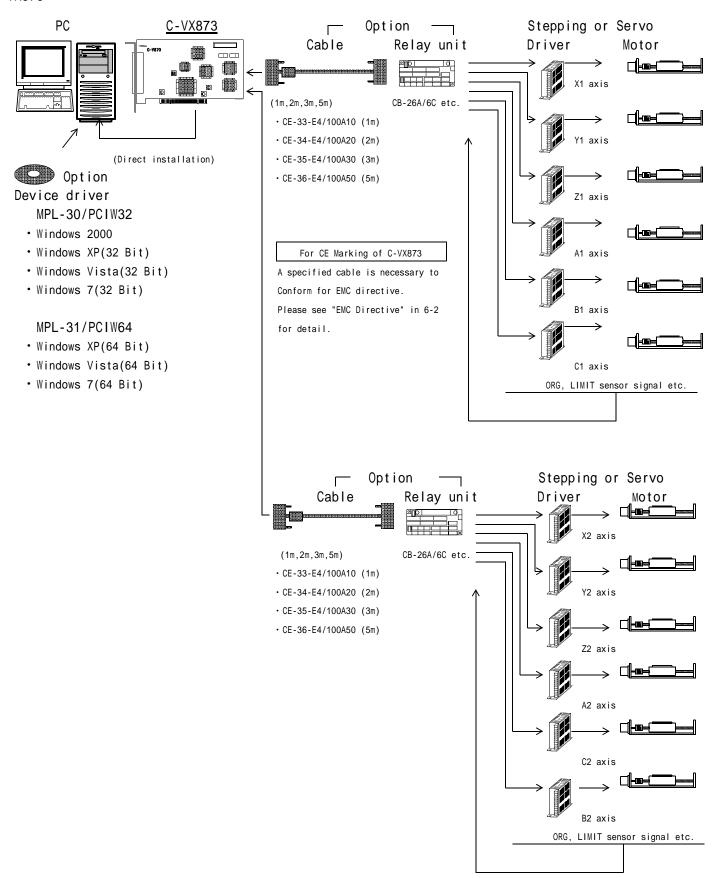
The C-VX871,C-VX873 are enable to optional axes liner interpolation drive or Optional 2-axis circular interpolation drive. (Applied function)

(The C-VX873 is enable to optional axes interpolation drive within the scope of the six axes.)

1-2. Product Configuration

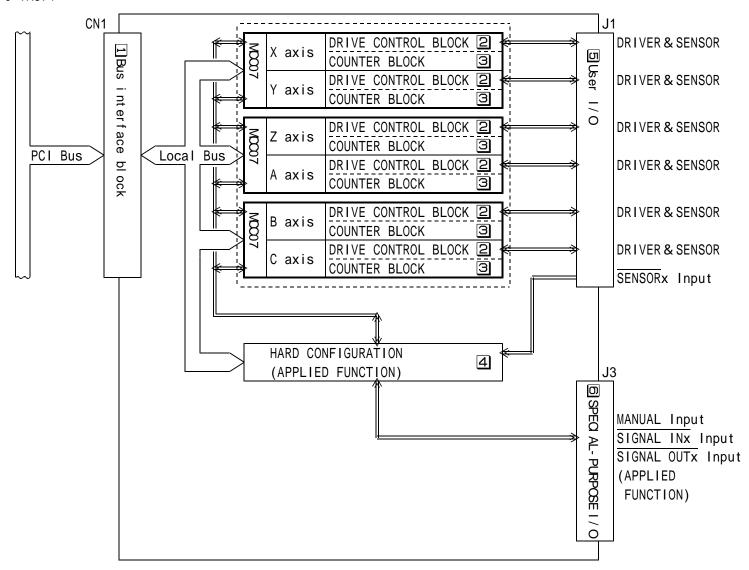

C-VX871

Product name	Rating	Maker	Quantity	Remarks
Controller	C-VX871	Melec Inc.	1	(Main unit)


C-VX873

· //								
	Product name	Rating Maker		Quantity	Remarks			
	Controller	C-VX873	Melec Inc.	1	(Main unit)			

1-3. Example of System Configuration



C-VX873

1-4. Function Block Diagram

C-VX871

1 Bus interface block
Interface block with the PCI bus

2 Drive control block

The drive control block outputs serial pulses to the motor driver.

The 2-axis indicated by ____ is interrelation.

It enables 2-axis linear interpolation or 2-axis circular interpolation.

∃ Counter block

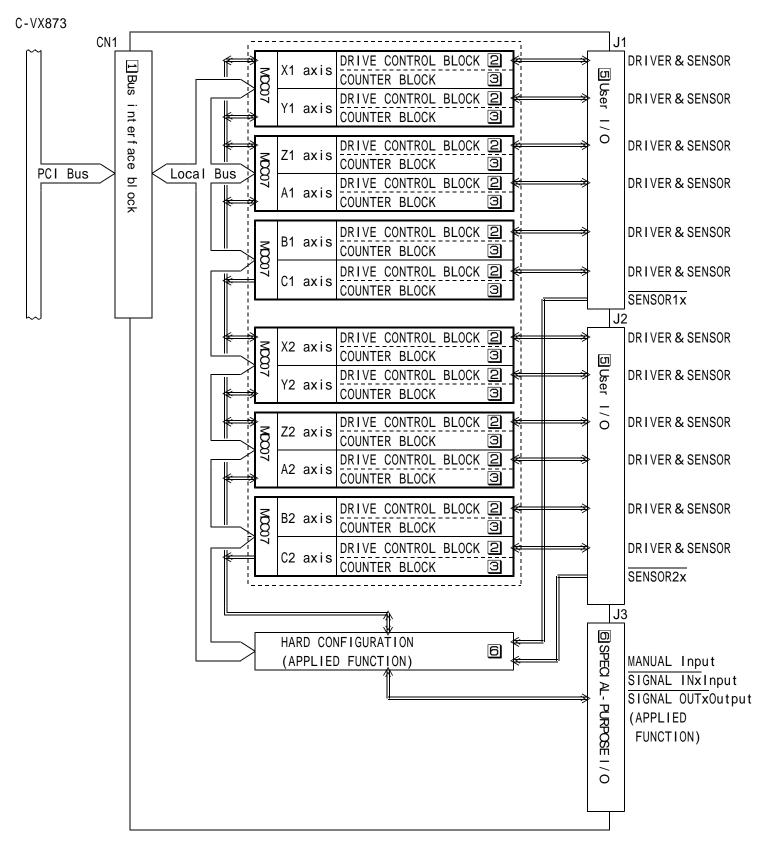
The counter block has three types of counters: ADDRESS COUNTER, PULSE COUNTER, and DFL COUNTER. (Can use as hard timer.)

ADDRESS COUNTER, PULSE COUNTER has 32-bit counter, DFL COUNTER(Hard timer) has 16-bit counter. These counters count pulses output by the controller.

Each counter equipped with three compare registers. These registers count optional count.

4 HARD CONFIGURATION block (APPLIED FUNCTION)

The HARD CONFIGURATION block is a control block that allows the user to connect User I/O and Special-purpose I/O to signals: Multipurpose sensor signal input to each axis, signal for synchronization control, status signal.


The control block is used for multipurpose sensor function, Synchronous drive function, Status output function.

5 User I/O block

The user I/O block interfaces with motor drivers, and sensors equipment signals.

6 Special-purpose I/O block (APPLIED FUNCTION)

The block interfaces with input signals what motors can be operated manually, and what can output status signals to the outside.

- 1 Bus interface block Interface block with the PCI bus
- 2 Drive control block

The drive control block outputs serial pulses to the motor driver.

The 2-axis indicated by ____ is interrelation.

It enables 2-axis linear interpolation or 2-axis circular interpolation.

3 Counter block

The counter block has three types of counters: ADDRESS COUNTER, PULSE COUNTER, and DFL COUNTER. (Can use as hard timer.)

ADDRESS COUNTER, PULSE COUNTER has 32-bit counter, DFL COUNTER(Hard timer) has 16-bit counter. These counters count pulses output by the controller.

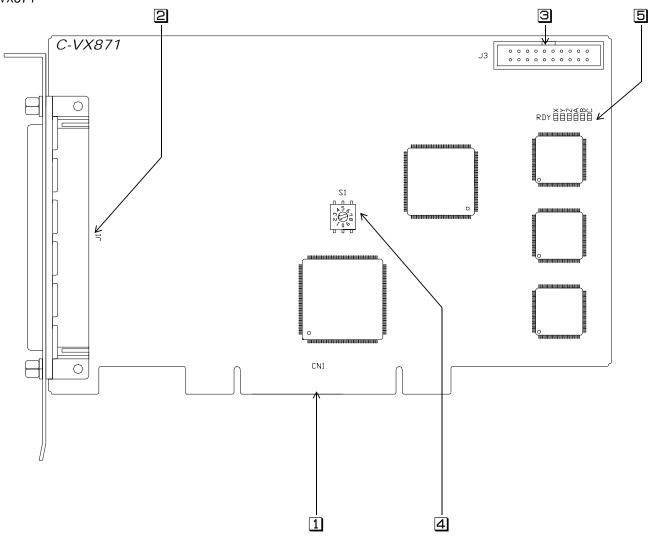
Each counter equipped with three compare registers. These registers count optional count.

4 HARD CONFIGURATION block (APPLIED FUNCTION)

The HARD CONFIGURATION block is a control block that allows the user to connect User I/O and Special-purpose I/O to signals: Multipurpose sensor signal input to each axis, signal for synchronization control, status signal.

The control block is used for multipurpose sensor function, Synchronous drive function, Status output function.

5 User I/O block


The user I/O block interfaces with motor drivers, and sensors equipment signals.

⑤ Special-purpose I/O block (APPLIED FUNCTION)

The block interfaces with input signals what motors can be operated manually, and what can output status signals to the outside.

1-5. Externals of product

C-VX871

11CN1 ------ Universal (5V/3.3V) board edge connector inserted into a PCI bus.

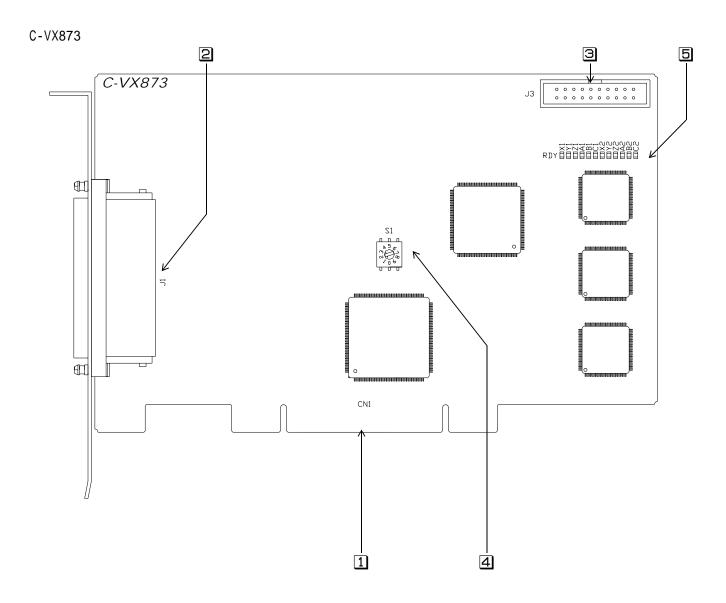
2J1 ----- 100-pin half pitch connector that interfaces the motor driver, sensor signals, and equipment having +24V interface I/O.

Dedicated interface cables (1m, 2m, 3m, and 5m) and relay units are available.

3J3 ----- Connector that interfaces with external signals at TTL level.

(APPLIED FUNCTION) Motors can be operated by manual operation through this connector.

External input signals can be assigned as input signals to signals for the SENSOR and signal for synchronization control.


Signals can be output to the outside by status signal of each axis.

A general-purpose standard MIL connector is used.

4S1 ----- Rotary switch that is set so that PCI can recognize the board number.

If two or more boards are inserted into the PC simultaneously, set the switch properly so that every board number is unique.

□ -- LEDs that allows the user to simply monitor the X, Y, Z, A, B and C axes to check whether the axes are operating normally. The RDY LED corresponding to each axis is on while the axis is waiting for a command and is off during command processing.

11CN1 ------ Universal (5V/3.3V) board edge connector inserted into a PCI bus slot

2J1,J2 ----- 100-pin 0.8mm pitch connector that interfaces the motor driver, sensor signals, and equipment having +24V interface I/O.

Dedicated interface cables (1m, 2m, 3m, and 5m) and relay units are available.

[3]J3 ------ Connector that interfaces with external signals at TTL level.

(APPLIED FUNCTION) Motors can be operated by manual operation through this connector.

External input signals can be assigned as input signals to signals for the SENSOR and

signal for synchronization control.

Signals can be output to the outside by status signal of each axis. A general-purpose standard MIL connector is used.

4S1 ----- Rotary switch that is set so that PCI can recognize the board number.

If two or more boards are inserted into the PC simultaneously, set the switch properly so that every board number is unique.

5RDY LED -- LEDs that allows the user to simply monitor the X1, Y1, Z1, A1, B1, C1, X2, Y2, Z2, A2, B2 and C2 axes to check whether the axes are operating normally.

The RDY LED corresponding to each axis is on while the axis is waiting for a command and is off during command processing.

2 . SPECIFICATIONS

2-1. PCI Specifications

No.	Item	Specifications				
1	Applicable standard	PCI Local Bus Specification Rev2.2				
2	Bus interface	 32-bit bus, 33 MHz clock 5V/3.3V Signal system (Universal) It is nesessary +5V power supplied from the bus slot. 				
3	Interrupt	• INTA#				
4	system resouce	• I/O : 128-byte + 256-byte				
5	Dimensions	Short card size (107mm×170mm×17mm)				

2-2. General Specifications

No.	ltem	Specifications			
1	Supply voltage, power consumption	C-VX871 +5V ±5%, 1.2 A or less +24Vdc ±2V, 250 mA or less (for photocoupler interface) C-VX873 +5V ±5%, 1.8 A or less +24Vdc ±2V, 500 mA or less (for photocoupler interface)			
2	Operating ambient temperature and humidity	•0 ~ +45 • 80%RH or less (without dew condensation)			
3	Storage temperature and humidity	•0 ~ +55 • 80%RH or less (without dew condensation)			
4	 Installation environment Not exposed to corrosive and flammable gasses, and not affected by oil mist, dust, salt, iron powder, water, and chemicals Not subject to constant vibration or excessive shock Not affected by electromagnetic noise caused by power equipment Free of radioactive materials and magnetic fields, and not in vacuum 				
5	Weight	• About 0.2 kg			

2-3. Basic Specifications

No.	ltem	Specifica	ations				
	Number of	C-VX-871: 6 axes					
	control axes	C-VX-873: 12 axes					
2	Pulse output function	Output type	 Independent direction output/Specified direction output/ Phase-differential signal output Line driver output 				
		Output frequency	 Independent drive : 0.1 Hz to 6.5 MHz Interpolation drive : 0.1 Hz to 5 MHz 				
		Acceleration/deceleration time constant	5000 ms/kHz to 0.0025 ms/kHz (Trapezoid/S-curve)				
		Acceleration/deceleration shape	Trapezoid/S-curve(This feature enables to set asymmetrical shape)				
		Triangular drive prevention	 During S-shaped acceleration/deceleration drive, INDEX drive may end before the maximum speed is reached. In this event, triangular drive can be automatically avoided. 				
		Number of output pulses	 JOG drive : -65,535 to +65,535 pulse SCAN drive : Up to infinite pulses INDEX drive : -2,147,483,647 to + 2,147,483,647 pulses 				
3	Encoder function	None					
4	Drive	JOG drive	• Pulses are constantly output until the specified pulses.				
	function	SCAN drive	• Pulses are continuously output until a stop command is detected.				
		INDEX drive	• Pulses are output until the specified relative or absolute address is reached.				
		ORIGIN drive	 The specified drive processes are performed. This drive is finished when the ORG signal specified edge is detected. 				
		2-axis linear interpolation drive	 Linear interpolation is performed toward the specified coordinates from the current coordinates. Driving type is selected from INDEX drive or SCAN drive. Max speed is 5MHz. Positional errors for the specified straight line are ± 0.5 LSB. The absolute and relative addresses that can be specified for coordinates range from -2,147,483,647 to +2,147,483,647 (32 bits). 				
		2-axis circular interpolation drive	 Circular interpolation is performed toward the specified coordinates from the current coordinates on the circular curve specified by the center-point or passing-point coordinates. Driving type is selected from INDEX drive or SCAN drive. Max speed is 5MHz. Positional errors for the specified circuit curve are ±1 LSB. The relative addresses range from -8,388,607 to +8,388,607 (24 bits). Short axis pulses range from -2,147,483,648 to +2,147,483,647 (32 bits). 				
		Linear speed constant control	 Control is performed to keep the synthesized speed of the two axes working for interpolation drive constant. 				

No.	Item	Specifica	ations					
5	Stop function	Slow stop function	 SLOW STOP command Detection of a match of the comparator of each counter. Multipurpose sensor signal(SS0,SS1) 					
		Immediate stop function	• FAST STOP command • FSSTOPn singal (User I/O) • FSSTOP signal (Special-purpose I/O) • Detection of a match of the comparator of each counter. • Multipurpose sensor signal(SSO,SS1)					
		LIMIT signal	 + direction stop Immediate stop by CWLM signal and slow stop can be selected. Slow stop or immediate stop can be performed for each axis upon detection of a match of the comparator(COMP2) of each counter. - direction stop Immediate stop by CCWLM signal and slow stop can be selected. Slow stop or immediate stop can be performed for each axis upon detection of a match of the comparator(COMP3) of each counter. 					
6	Counter function	Address counter	· 32-bit counter that manages absolute addresses by counting drive output pulses					
		Pulse counter	· 32-bit counter that countes external pulse signals or encoder feedback pulses.					
		Pulse differential counter	 It is a 16-bit counter which counts a drive pulse output or a system clock (20MHz). A standard clock is counted and it can be used as a timer. * Since this product has not equipped the encoder pulse input circuit, the deviation of a drive pulse output and an encoder pulse is undetectable. 					
		Comparator function	 Detection of a match of the three comparators of each counter. Upon detection of a match by the comparator, pulse output can be decelerated and then stopped, or stopped immediately. Upon detection of a match by the comparator, output external status signal. 					
		AUTO CLEAR function	• The comparator of each counter: The counter can automatically be cleared upon detection of a match of COMP1 of each counter.					
		AUTO ADD function	• The comparator of each counter: If the couter value reaches the COMP1, a value that is set by the data add to COMPARE REGISITER1.					
7	Other functions	Servo driver support function	The signals are specially prepared as servo driver suport signals. Servo positioning completion input/phase (DEND/PO) signal input Servo reset output (DRST)					
		Data reading function	• Current status information can be read in real time. Current status information includes status data, count data of a counter etc.					

2-4. Applied Functions

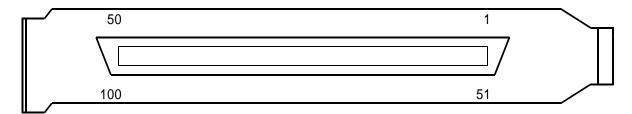
No.	I tem		Description of specifications					
1	Drive function	UP/DOWN/CONST drive CHANGE function	 Drive change for acceleration, deceleration, or constant speed can be performed upon detection of signal at an arbitrary change operation point. 					
		SPEED CHANGE function	• The drive pulse speed is changed upon detection of signal at an arbitrary change operation point.					
		RATE CHANGE function	 The rate is changed upon detection of signal at an arbitrary change to the specified rate. 					
		INDEX CHANGE function	 Upon detection of signal at an arbitrary change operation point, the stop position at which drive is to be finished is changed. Upon detection of the INC INDEX CHANGE command, the system performs INC INDEX drive by setting the specified data at the stop position of the relative address for which the start position is the origin. Upon detection of the ABS INDEX CHANGE command, the system performs ABS INDEX drive by setting the specified data at the stop position of the absolute address managed with the address counter. 					
		Optional axes liner interpolation drive	C-VX871 Linear interpolation is performed toward the specified coordinates from the current coordinates. Then long axis outputs pulses. C-VX873 Linear interpolation is performed toward the specified coordinates from the current coordinates. Then long axis outputs pulses. Optional axes are as follows: (First affiliated axis:X1 to C1 axis, Second affiliated axis:X2 to C2 axis)					
		Optional 2-axis circular interpolation drive	C-VX871 Circular interpolation is performed toward the specified coordinates from the current coordinates on the circular curve. C-VX873 Circular interpolation is performed toward the specified coordinates from the current coordinates on the circular curve. Optional axes are as follows: (First affiliated axis:X1 to C1 axis, Second affiliated axis:X2 to C2 axis)					
		INDEX drive controll the start point at auto deceleration	 This function is allowed to set OFFSET of the start point at auto deceleration. This function can be used When INDEX drive, liner interpolation INDEX drive, and circular interpolation INDEX drive. 					
		MANUAL SCAN drive	• MANUAL SCAN/JOG drive in the + or - direction is performed by operation of SELA to D,MAN, CWMS, CCWMS signal input through the J3 connector.					
2	Count function	Ring counter function	The address counter, pulse counter each are a ring counter in which any maximum count can be set.					
		Count data latch/clearance function	 This function latches count data of a counter at a specific latch timing and holds it till the next latch timing. Each counter can latch counter value at arbitrary timing. It is possible to clear a counter value at the latch timing. 					

No.	Item		Description of specifications				
3	Other functions	Interrupt function	 Each axis can output interrupt signals to the CPU. Each interrupt signal is output when an interrupt is caused by drive end, state of a reservation register, and detection of a match by the counter. 				
		Command reservation function	 Each axis has a reservation register that can store data commands for ten instructions. General-purpose commands of Drive commands can be reserved in the reservation register. After the command being executed is finished, the commands stored in the reservation register are executed sequentially. Then this function can be allowed continuous drive. 				
		Input signal logical switch function	The input signal can be changed to logic as follows:CWLMCCWLM				
		Input signal time constant function	The input signal can be set time constant as follows: CWLM CCWLM DEND/PO ORG NORG ± ZORG				
		Multipurpose sensor signal input	Each axis has multipurpose sensor signal input used as stop signal, trigger signal of a counter latch data and drive CHANGE operating signal. The signal can be used as multipurpose sensor as follows: • SENSORnx input signal • SIGNAL INnx input signal • A status in any axis				
		Status external signal output function	• The compare register value, STATUS, output signal of each counter can output as SIGNAL OUTnx output signal.				
		Synchronized start function	You can perform synchronized start with any axis. A condition of start can be set by the condition as follows: SENSORnx input signal SIGNAL INnx input signal A status in any axis PAUSE command				
		Status read Data reading	 Current status information can be read in real time. Current status information includes setting data any axis, latch data of a counter etc. 				

Applied function. Refer to the separate manual $\lceil MPL-30/PCIW32 \mid Applied \mid Functions \mid Part_J \mid Applied \mid Applie$

2-5. Input and Output Signal Table

(1) User I/O connector


Pin assignments

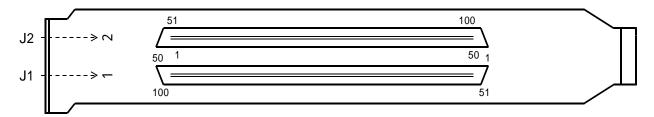
C-VX871(J1)

• Connector type name : DX10A -100S(50) (HIROSE Electric) • Adaptable socket : DX30A -100P(50) ,DX31A -100P etc.

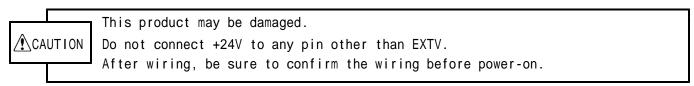
(Hirose Electric, not included in attached accessories)

· Adaptable cable : 1m , 2m, 3m, or 5m shielded cable (option)

C-VX873(J1,J2)


• Connector type name : HDRA-E100W1LFDT1EC-SL+ (HONDA TSUSHIN KOGYO)

· Adaptable socket : HDRA-E100MA1+ ,HDRA-E100M1+ etc.


(HONDA TSUSHIN KOGYO, not included in attached accessories)

(Adaptable socket is 100-pin)

· Adaptable cable : 1m , 2m, 3m, or 5m shielded cable (option)

Signal table

A signal indicated by _____ is photocoupler-insulated.

A signal is enable to set time constants marked with . (Applied function)

Logic switching is enabled for an input signal marked with . (Applied function)

Logic switching is enabled for general-purpose input signal $\overline{\text{INnx}}$,

when this signal is used for DALM function

(Note 1)

An external power supply is required for a signal that is photocoupler-insulated.

The specified input voltage range is $+24V \pm 2V$.

C-VX871: Current consumption at +24V is up to 250mA.

C-VX873: Current consumption at +24V is up to 500mA.

The initial values of the CWLM and CCWLM signals of each axis and the FSSTOP signal are ACTIVE OFF input (B contact).

An external power supply must be connected even if these signals are not used.

The default contact B is recommended for the CWLM and CCWLM signals.

However, A-contact signal input can also be used by switching logic.

(Note 2)

SENSORnx input signals are used for multipurpose sensor function, synchronization control function. These input signals is used by any functions setting. (Applied function) The initial value after resetting is as follows:

SENSORNO signal is SSO of Zn axis, SENSORNO signal is SSO of An axis.

When $\overline{\text{SENSORnx}}$ input signal is used for multipurpose sensor function, this signal can not use in MANUAL mode.

When MANUAL mode, the functions of multipurpose sensor assigned to the $\overline{\text{SENSORnx}}$ input signal are invalid.

When BUS mode, this function are valid.

C-VX871(J1)

	Dir- ect-	Signal name	Description	Pin No.	Dir- ect-	Signal name	Description
1	ion In		X axis + (CW) direction limit	51	ion In		Z axis + (CW) direction limit
2	In	XCWLM	signal X axis - (CCW) direction limit	52	In	ZCWLM	z axis - (CCW) direction limit
3	In	XCCWLM	signal X axis machine origin proximity	53	In	ZCCWLM	signal Z axis machine origin proximity
4	In	XNORG	signal X axis machine origin signal	54	In	ZNORG	signal Z axis machine origin signal
5	In		Y axis + (CW) direction limit	55	In		A axis + (CW) direction limit
6	In	YCWLM	signal Y axis - (CCW) direction limit	56	In	ACWLM	A axis - (CCW) direction limit
7	In	YCCWLM	signal Y axis machine origin proximity	57	In	ACCWLM	signal A axis machine origin proximity
8	In	YNORG	signal Y axis machine origin signal	58	In	ANORG AORG	signal A axis machine origin signal
9	In		B axis + (CW) direction limit	59	In	CCWLM	C axis + (CW) direction limit
10	In	BCCWLM	signal B axis - (CCW) direction limit signal	60	In	CCCWLM	signal C axis - (CCW) direction limit signal
11	In	BNORG	B axis machine origin proximity	61	In	CNORG	C axis machine origin proximity
12	In	BORG	signal B axis machine origin signal	62	In	CORG	signal C axis machine origin signal
13	In	SENSORO	Multipurpose sensor,synchronous start signal (Note 2)	63	In	SENSOR1	Multipurpose sensor,synchronous start signal (Note 2)
14	-	EXTV	External power supply for	64	-	EXTVGND	External power supply for
15	-	EXTV	coupler (Note 1)	65	-	EXTVGND	coupler GND (Note 1)
16	-	N.C	Reserved	66	-	N.C	Reserved
—	Out Out	+COM XCWP	XCWP,XCCWP +common (+5V) X axis + (CW) direction positive	67 68	Out Out	+COM ZCWP	ZCWP,ZCCWP +common (+5V) Z axis + (CW) direction positive
		XCWP	logic pulse output X axis + (CW) direction negative			ZCWP	logic pulse output
	Out		logic pulse output	69	Out	-	Z axis + (CW) direction negative logic pulse output
	Out	XCCWP	X axis -(CCW) direction positive logic pulse output	70	Out	ZCCWP	Z axis -(CCW) direction positive logic pulse output
21	Out	XCCWP	X axis -(CCW) direction negative logic pulse output	71	Out	ZCCWP	Z axis -(CCW) direction negative logic pulse output
—	Out	XDRSTCOM	XDRST current output (+24V)	72	Out	ZDRSTCOM	ZDRST current output (+24V)
23	Out	XDRST	X axis servo reset signal (This signal is used for general purpose output)	73	Out	ZDRST	Z axis servo reset signal (This signal is used for general purpose output)
24	In	XDEND/XPO	X axis positioning completion signal /X axis PO signal	74	In	ZDEND/ZPO	Z axis positioning completion signal /Z axis PO signal
25	In	+XZORG	X axis encoder +Z phase signal	75	In	+ZZORG	Z axis encoder +Z phase signal
26 27	In Out	-XZORG +COM	X axis encoder -Z phase signal YCWP, YCCWP +common (+5V)	76 77	In Out	-ZZORG +COM	Z axis encoder -Z phase signal ACWP, ACCWP +common (+5V)
-	Out	YCWP	Y axis + (CW) direction positive logic pulse output	78	Out	ACWP	A axis + (CW) direction positive logic pulse output
29	0u t	YCWP	Y axis + (CW) direction negative logic pulse output	79	Out	ACWP	A axis + (CW) direction negative logic pulse output
30	Out	YCCWP	Y axis - (CCW) direction positive logic pulse output	80	Out	ACCWP	A axis - (CCW) direction positive logic pulse output
31	0u t	YCCWP	Y axis - (CCW) direction negative logic pulse output	81	Out	ACCWP	A axis - (CCW) direction negative logic pulse output
-	Out	YDRSTCOM	YDRST current output (+24V)	82	Out	ADRSTCOM	ADRST current output (+24V)
33	Out	YDRST	Y axis servo reset signal (This signal is used for general purpose output)	83	Out	ADRST	A axis servo reset signal (This signal is used for general purpose output)
34	In	YDEND/YPO	Y axis positioning completion signal /Y axis PO signal	84	In	ADEND/APO	A axis positioning completion signal /A axis PO signal
35	In	+YZORG	Y axis encoder +Z phase signal	85	In	+AZORG	A axis encoder +Z phase signal
36	In Out	-YZORG	Y axis encoder -Z phase signal	86	In	-AZORG	A axis encoder -Z phase signal
-	Out Out	+COM BCWP	BCWP,BCCWP +common (+5V) B axis + (CW) direction positive	87 88	Out Out	+COM CCWP	CCWP,CCCWP +common (+5V) C axis + (CW) direction positive
39	Out	BCWP	logic pulse output B axis + (CW) direction negative	89	Out	CCWP	logic pulse output C axis + (CW) direction negative
40	Out	BCCWP	logic pulse output B axis - (CCW) direction positive	90	Out	CCCWP	logic pulse output C axis - (CCW) direction positive
41	Out	BCCWP	logic pulse output B axis - (CCW) direction negative	91	Out	CCCWP	C axis - (CCW) direction negative
42	Out	BDRSTCOM	logic pulse output BDRST current output (+24V)	92	Out	CDRSTCOM	logic pulse output CDRST current output (+24V)
	Out		B axis servo reset signal (This signal is used for general	93	Out		C axis servo reset signal (This signal is used for general
44	In	BDRST	Powing Documents of State Completion Signal	94	In	CDEND (CDO	Caxis positioning completion signal
45	In	BDEND/BPO +BZORG	/Baxis PO signal B axis encoder +Z phase signal	95	In	+CZORG	/C axis PO signal C axis encoder +Z phase signal
46	In	-BZORG	B axis encoder -Z phase signal	96	In	-CZORG	C axis encoder -Z phase signal
47	In	FSSTOP	All axes immediate stop signal	97	In	RESET	All-axis reset signal
48 49	-	N.C N.C	Reserved Reserved	98 99	-	N.C N.C	Reserved Reserved
50	_	D. GND	Internal +5V digital GND	100	-	D. GND	Internal +5V digital GND

C-VX873(J1)

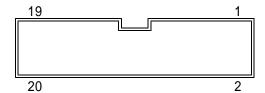
Pin	Dir-	Signal		Pin	Dir-	Signal	
No.	ect-	name	Description	No.	ect-	name	Description
1	In		X1 axis + (CW) direction limit	51	In		Z1 axis + (CW) direction limit
		X1CWLM	signal			Z1CWLM	signal
2	In	X1CCWLM	X1 axis – (CCW) direction limit signal	52	In	Z1CCWLM	Z1 axis – (CCW) direction limit signal
3	In	X1NORG	X1 axis machine origin proximity	53	In	Z1NORG	Z1 axis machine origin proximity
4	In	X10RG	signal X1 axis machine origin signal	54	In	Z10RG	signal Z1 axis machine origin signal
5	In	XTORO	Y1 axis + (CW) direction limit	55	In	ZTORO	A1 axis + (CW) direction limit
		Y1CWLM	signal			A1CWLM	signal
6	In	Y1CCWLM	Y1 axis – (CCW) direction limit signal	56	In	A1CCWLM	A1 axis – (CCW) direction limit signal
7	In	1441000	Y1 axis machine origin proximity	57	In		A1 axis machine origin proximity
8	In	Y1NORG Y1ORG	signal Y1 axis machine origin signal	58	In	A1NORG A1ORG	signal A1 axis machine origin signal
9	In	TTOKO	B1 axis + (CW) direction limit	59	In	ATORG	C1 axis + (CW) direction limit
		B1CWLM	signal			C1CWLM	signal
10	In	B1CCWLM	B1 axis – (CCW) direction limit signal	60	In	C1CCWLM	C1 axis – (CCW) direction limit signal
11	In		B1 axiş machine origin proximity	61	In	0.44000	C1 axis machine origin proximity
12	In	B1NORG B1ORG	signal B1 axis machine origin signal	62	In	C1NORG C1ORG	signal C1 axis machine origin signal
13	In	DIUNG	Ů	63	In	CTORG	, ,
13	1111	SENSOR10	Multipurpose sensor,synchronous start signal (Note 2)	03	111	SENSOR11	Multipurpose sensor,synchronous start signal (Note 2)
14	-	EXTV	External power supply for coupler (Note 1)	64	-	EXTVGND	External power supply for coupler GND (Note 1)
15	-	EXTV	Couple: (Note !)	65	-	EXTVGND	Coupler GND (Note 1)
16	-	N.C	Reserved	66	-	N.C	Reserved
17	Out	+COM	X1CWP,X1CCWP +common (+5V)	67	Out	+COM	Z1CWP,Z1CCWP +common (+5V)
18	Out	X1CWP	X1 axis + (CW) direction positive logic pulse output	68	Out	Z1CWP	Z1 axis + (CW) direction positive logic pulse output
19	Out	X1CWP	X1 axis + (CW) direction negative	69	Out	Z1CWP	Z1 axis + (CW) direction negative
20	04	VACCWD	logic pulse output	70	04	74 CCWD	logic pulse output
20	Out	X1CCWP	X1 axis -(CCW) direction positive logic pulse output	70	Out	Z1CCWP	Z1 axis –(CCW) direction positive logic pulse output
21	Out	X1CCWP	X1 axis -(CCW) direction negative logic pulse output	71	Out	Z1CCWP	Z axis -(CCW) direction negative logic pulse output
22	Out	X1DRSTCOM	X1DRST current output (+24V)	72	Out	Z1DRSTCOM	Z1DRST current output (+24V)
23	Out		X1 axis servo reset signal	73	Out		Z1 axis servo reset signal
		X1DRST	(This signal is used for general purpose output)			Z1DRST	(This signal is used for general purpose output)
24	In		X1 axis positioning completion	74	In		Z1 axis positioning completion
		X1DEND/X1PO	signal/ X1 axis PO signal	7.5		Z1DEND/Z1PO	signal /Z1 axis PO signal
25 26	In In	+X1ZORG -X1ZORG	X1 axis encoder +Z phase signal X1 axis encoder -Z phase signal	75 76	In In	+Z1ZORG -Z1ZORG	Z1 axis encoder +Z phase signal Z1 axis encoder -Z phase signal
27	Out	+COM	Y1CWP.Y1CCWP +common (+5V)	77	Out	+COM	A1CWP,A1CCWP +common (+5V)
28	Out	Y1CWP	Y1 axis + (CW) direction positive	78	Out	A1CWP	A1 axis + (CW) direction positive
			logic pulse output		0 .	1.10000	logic pulse output
29	Out	Y1CWP	Y1 axis + (CW) direction negative logic pulse output	79	Out	A1CWP	A1 axis + (CW) direction negative logic pulse output
30	Out	Y1CCWP	Y1 axis - (CCW) direction positive	80	Out	A1CCWP	A1 axis - (CCW) direction positive logic pulse output
31	Out	Y1CCWP	logic pulse output Y1 axis - (CCW) direction negative	81	Out	A1CCWP	A1 axis - (CCW) direction negative
			logic pulse oútput				logic pulse oútput
32	Out	Y1DRSTCOM	Y1DRST current output (+24V)	82	Out	A1DRSTCOM	A1DRST current output (+24V)
33	Out	Y1DRST	Y1 axis servo reset signal (This signal is used for general	83	Out	A1DRST	A1 axis servo reset signal (This signal is used for general
34	In	YTUKST	purpose output) Y1 axis positioning completion	84	In	ATURST	purpose output) A1 axis positioning completion
	'''	Y1DEND/Y1PO	signal/Y1 axis P0 signal		'''	A1DEND/A1PO	signal/A1 axis P0 signal
35	In	+Y1ZORG	Y1 axis encoder +Z phase signal	85	In	+A1ZORG	A1 axis encoder +Z phase signal
36	In	-Y1ZORG	Y1 axis encoder -Z phase signal	86	In	-A1ZORG	A1 axis encoder -Z phase signal
37	Out Out	+COM B1CWP	B1CWP, B1CCWP +common (+5V) B1 axis + (CW) direction positive	87 88	Out Out	+COM C1CWP	C1CWP, C1CCWP +common (+5V) C1 axis + (CW) direction positive
36	out	-	logic pulse output	00	out		logic pulse output
39	Out	B1CWP	B1 axis + (CW) direction negative logic pulse output	89	Out	C1CWP	C1 axis + (CW) direction negative logic pulse output
40	Out	B1CCWP	B1 axis - (CCW) direction positive	90	Out	C1CCWP	C1 axis - (CCW) direction positive
			logic pulse oútput				logic pulse oútput
41	Out	B1CCWP	B1 axis - (CCW) direction negative logic pulse output	91	Out	C1CCWP	C1 axis - (CCW) direction negative logic pulse output
42	Out	B1DRSTCOM	B1DRST current output (+24V)	92	Out	C1DRSTCOM	C1DRST current output (+24V)
43	Out		B1 axis servo reset signal (This signal is used for general	93	Out		C1 axis servo reset signal (This signal is used for general
44	In	B1DRST	purpose output) B1 axis positioning completion	94	In	C1DRST	<u>`purpose`output)</u> C1 axis positioning completion
		B1DEND/B1PO	signal/B1 axis P0 signal			C1DEND/C1PO	signal/C1 axis PO signal
45 46	In In	+B1ZORG -B1ZORG	B1 axis encoder +Z phase signal B1 axis encoder -Z phase signal	95 96	In In	+C1ZORG -C1ZORG	C1 axis encoder +Z phase signal C1 axis encoder -Z phase signal
46	In	FSSTOP1	X1~C1 axes immediate stop signal	96	In	RESET1	All-axis encoder -z phase signal
48	-	N.C	Reserved	98	-	N.C	Reserved
49	-	N.C	Reserved	99	-	N.C	Reserved
50	-	D.GND	Internal +5V digital GND	100	-	D.GND	Internal +5V digital GND

C-VX873(J2)

	Dir- ect-	Signal name	Description	Pin No.	Dir- ect-	Signal name	Description
1	ion In		X2 axis + (CW) direction limit	51	ion In		Z2 axis + (CW) direction limit
2	In	X2CWLM	signal X2_axis - (CCW) direction limit	52	In	Z2CWLM	zignal Z2_axis - (CCW) direction limit
3	In	X2CCWLM	signal X2 axis machine origin proximity	53	In	Z2CCWLM	zignal Z2 axis machine origin proximity
4	In	X2NORG X2ORG	signal X2 axis machine origin signal	54	In	Z2NORG Z2ORG	zignal Z2 axis machine origin signal
5	In		Y2 axis + (CW) direction limit	55	In		A2 axis + (CW) direction limit
6	In	Y2CWLM	signal Y2 axis - (CCW) direction limit	56	In	A2CWLM	A2 axis - (CCW) direction limit
7	In	Y2CCWLM	signal Y2 _a xis machine origin proximity	57	In	A2CCWLM	A2 axis machine origin proximity
8	In	Y2NORG Y2ORG	signal Y2 axis machine origin signal	58	In	A2NORG A2ORG	A2 axis machine origin signal
9	In	B2CWLM	B2 axis + (CW) direction limit signal	59	In	C2CWLM	C2 axis + (CW) direction limit signal
10	In	B2CCWLM	B2 axis - (CCW) direction limit signal	60	In	C2CCWLM	C2 axis - (CCW) direction limit
11	In	B2NORG	B2 axis machine origin proximity signal	61	In	C2NORG	C2 axis machine origin proximity
12	In	B20RG	B2 axis machine origin signal	62	In	C20RG	signal C2 axis machine origin signal
13	In	SENSOR20	Multipurpose sensor,synchronous start signal (Note 2)	63	In	SENSOR21	Multipurpose sensor,synchronous start signal (Note 2)
14	-	EXTV	External power supply for	64	-	EXTVGND	External power supply for
15	-	EXTV	coupler (Note 1)	65	-	EXTVGND	coupler GND (Note'1)
16	-	N.C	Reserved	66	-	N.C	Reserved
H +	Out Out	+COM X2CWP	X2CWP, X2CCWP +common (+5V) X2 axis + (CW) direction positive	67 68	Out Out	+COM Z2CWP	Z2CWP,Z2CCWP +common (+5V) Z2 axis + (CW) direction positive
		X2CWP	logic pulse output			Z2CWP	logic pulse output
	Out		X2 axis + (CW) direction negative logic pulse output	69	Out	-	Z2 axis + (CW) direction negative logic pulse output
	Out	X2CCWP	X2 axis -(CCW) direction positive logic pulse output	70	Out	Z2CCWP	Z2 axis -(CCW) direction positive logic pulse output
	Out	X2CCWP	X2 axis -(CCW) direction negative logic pulse output	71	Out	Z2CCWP	Z axis - (CCW) direction negative logic pulse output
H +	Out	X2DRSTCOM	X2DRST current output (+24V)	72 73	Out	Z2DRSTCOM	Z2DRST current output (+24V)
23	Out	X2DRST	X2 axis servo reset signal (This signal is used for general purpose output)	73	Out	Z2DRST	Z2 axis servo reset signal (This signal is used for general purpose output)
24	In	X2DEND/X2PO	X2 axis positioning completion signal/ X2 axis PO signal	74	In	Z2DEND/Z2PO	Z2 axis positioning completion signal /Z2 axis P0 signal
25	In	+X2ZORG	X2 axis encoder +Z phase signal	75	In	+Z2ZORG	Z2 axis encoder +Z phase signal
26 27	In Out	-X2ZORG +COM	X2 axis encoder -Z phase signal Y2CWP, Y2CWP +common (+5V)	76 77	In Out	-Z2ZORG +COM	Z2 axis encoder -Z phase signal A2CWP, A2CCWP +common (+5V)
-	Out	Y2CWP	Y2 axis + (CW) direction positive logic pulse output	78	Out	A2CWP	A2 axis + (CW) direction positive logic pulse output
29	Out	Y2CWP	Y2 axis + (CW) direction negative logic pulse output	79	Out	A2CWP	A2 axis + (CW) direction negative logic pulse output
30	Out	Y2CCWP	Y2 axis - (CCW) direction positive logic pulse output	80	Out	A2CCWP	A2 axis - (CCW) direction positive logic pulse output
31	Out	Y2CCWP	Y2 axis – (CCW) direction negative logic pulse output	81	Out	A2CCWP	A2 axis - (CCW) direction negative logic pulse output
32	Out	Y2DRSTCOM	Y2DRST current output (+24V)	82	Out	A2DRSTCOM	A2DRST current output (+24V)
33	Out	Y2DRST	Y2 axis servo reset signal (This signal is used for general purpose output)	83	Out	A2DRST	A2 axis servo reset signal (This signal is used for general purpose output)
34	In	Y2DEND/Y2PO	Y2 axis positioning completion signal/Y1 axis P0 signal	84	In	A2DEND/A2PO	A2 axis positioning completion signal/A1 axis P0 signal
35	In	+Y2Z0RG	Y2 axis encoder +Z phase signal	85	In	+A2ZORG	A2 axis encoder +Z phase signal
36	In Out	-Y2ZORG	Y2 axis encoder -Z phase signal	86	In Out	-A2ZORG	A2 axis encoder -Z phase signal
-	Out Out	+COM B2CWP	B2CWP, B2CCWP +common (+5V) B2 axis + (CW) direction positive	87 88	Out Out	+COM C2CWP	C2CWP, C2CCWP +common (+5V) C2 axis + (CW) direction positive
39	Out	B2CWP	logic pulse output B2 axis + (CW) direction negative	89	Out	C2CWP	logic pulse output C2 axis + (CW) direction negative
40	Out	B2CCWP	logic pulse output B2 axis - (CCW) direction positive	90	Out	C2CCWP	logic pulse output C2 axis - (CCW) direction positive
41	Out	B2CCWP	logic pulse output B2 axis - (CCW) direction negative	91	Out	C2CCWP	logic pulse output C2 axis - (CCW) direction negative
42	Out	B2DRSTCOM	logic pulse output B2DRST current output (+24V)	92	Out	C2DRSTCOM	logic pulse oútput C2DRST current output (+24V)
	Out		B2 axis servo reset signal (This signal is used for general	93	Out		C2 axis servo reset signal (This signal is used for general
44	In	B2DRST B2DEND/B2P0	purpose output) B2 axis positioning completion	94	In	C2DEND/C2PO	purpose output) C2 axis positioning completion
45	In	+B2ZORG	signal/B1 axis P0 signal B2 axis encoder +Z phase signal	95	In	+C2ZORG	signal/C1 axis P0 signal C2 axis encoder +Z phase signal
46	In	-B2ZORG	B2 axis encoder -Z phase signal	96	In	-C2ZORG	C2 axis encoder -Z phase signal
47	In	FSST0P2	X2 ~ C2 axis immediate stop signal	97	In	RESET2	All-axis reset signal
48 49	-	N.C N.C	Reserved Reserved	98 99	-	N.C N.C	Reserved Reserved
		D. GND	Internal +5V digital GND	100	_	D. GND	Internal +5V digital GND

(2) Special-purpose I/O connector

The conector of the applied function.


Pin assignment

C-VX871,C-VX873(Common to C-VX871 and C-VX873)

Connector type name : XG4C-2031 (OMRON)

· Adaptable connector socket : XG4M-2030 (OMRON, not included in attached accessories)

• Adaptable cable : MIL 20P 1.5m flat cable (option)

Signal table

· All input signal is not able to set time constants, to switch logic.

(Note 1) When the \overline{MAN} signal goes low, this bord is MANUAL mode.

When the $\overline{\text{MAN}}$ signal goes high, this bord return to BUS mode.

The MAN RDY signal is enable to go high by MAN MASK command.

When the $\overline{\text{MAN}}$ signal is low level, this bord is not MANUAL mode by setting $\overline{\text{MAN}}$ signal low level.

(Note 2) SIGNAL INnx input signal can be use general-purpose sensor function and synchronous start function.

If these signal is used, set the functions that need to be changed from their values.

The initial value after the relevant signal is reset is "No function" .

If this bord is MANUAL mode, You can not use SIGNAL INnx input signal.

When this bord is MANUAL mode, this signal (SEL A-D) enable to select an axis that perfoms MANUAL SCAN drive.

The functions assigned to the $\overline{\text{SIGNAL INnx}}$ input signal are invalid. And when this bord returns to BUS mode, the functions assigned to this signal are valid.

(Note 3) SIGNAL OUTnx output signal can be output status signals of any axes by setting status output function.

The initial values after the relevant signal is reset are as follows:

 $\overline{\text{SIGNAL OUTnO}}$ is CNTINT signal of Xn axis.

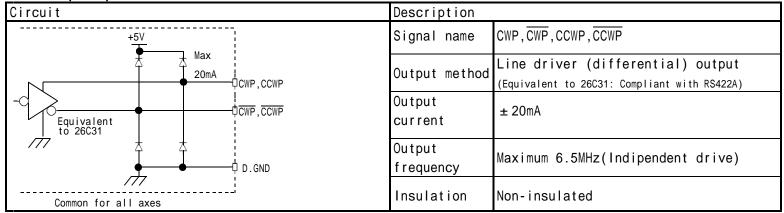
SIGNAL OUTn1 is CNTINT signal of Yn axis.

(Note 4) When this bord is MANUAL mode, \$\overline{SSO}\$, \$\overline{SSI}\$ input signal(SEL A-D) enables general-purpose sensor that MANUAL SCAN drive specified axis.

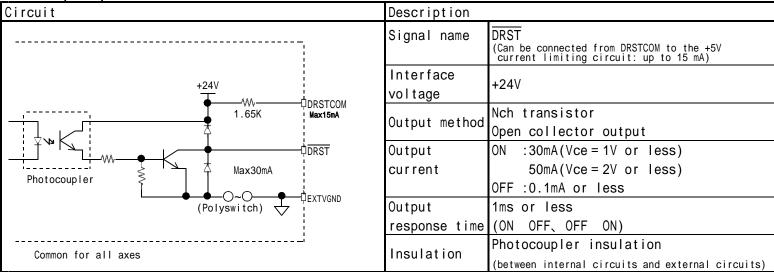
When general-purpose sensor function is set as "UP/DOWN/CONST command", this input signal enable acceleration/deceleration command signal of MANUAL SCAN drive.

C-VX871(J3)

Pin	Di-		Description			
No.	re- Signal name ct- ion		BUS mode	MANUAL mode		
1	1 - D.GND		CND(internal +5V GND)			
2	In	MAN	MANUAL mode select signal	(Note 1)		
3	In	FSSTOP	All axes immediate stop signal			
4	In	CWMS	Januari Sal	CW direction MANUAL SCAN drive command signal		
5	In	CCWMS	Invalid	CCW direction MANUAL SCAN drive command signal		
6	-	D.GND	GND(internal +5V GND)			
7	In	SIGNAL INO / SEL A	General-purpose,			
8	In	SIGNAL IN1 / SEL B	synchronous start signal (Note 2)	The signals can be combined to select the axis used for manual		
9	In	SEL C	lavalid	operation.		
10	In	SEL D	Invalid			
11	Out	SIGNAL OUTO	(The initial value after resetting: XCNTINT)			
12	Out	SIGNAL OUT1	Staus output signal (Note 3) (The initial value after resetting: YCNTINT)			
13	Out	NC				
14	Out	NC	Reserved			
15	-	D.GND	GND(internal +5V GND)			
16	Out	+5V	Internal +5V			
17	In	SS0	Invalid MANUAL SCAN drive acceleration/ deceleration command signal (General-purpse sensor signal) (No			
18	In	SS1				
19	Out	MAN RDY	Permission signal switching MANUAL mode	e (Note 1)		
20	-	D.GND	GND(internal +5V GND)			


C-VX873(J3)

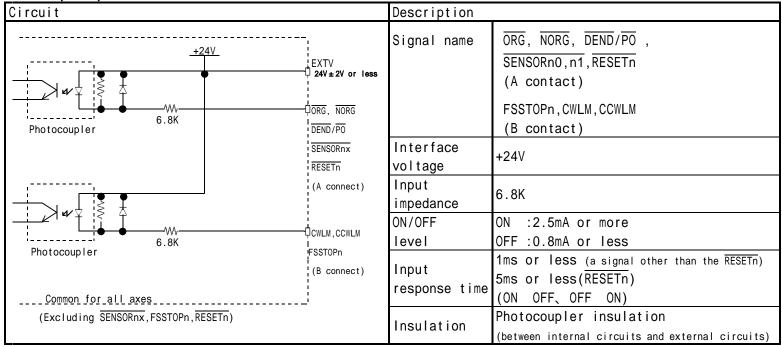
			T			
Pin	Di- re-	Signal name	Description			
No.	ct- ion	orginal name	BUS mode	MANUAL mode		
1	-	D.GND	GND(internal +5V GND)			
2	In	MAN	MANUAL mode select signal	(Note 1)		
3	In	FSSTOP	All axes immediate stop signal			
4	In	CWMS		CW direction MANUAL SCAN drive command signal		
5	In	CCWMS	Invalid	CCW direction MANUAL SCAN drive command signal		
6	-	D.GND	GND(internal +5V GND)			
7	In	SIGNAL IN10 / SEL A	X1,Y1,Z1,A1,B1,C1 axis (Note 2)			
8	In	SIGNAL IN11 / SEL B	general-purpose, synchronous start signal	MANUAL CCAN drive select svic signal		
9	In	SIGNAL IN20 / SEL C	X2,Y2,Z2,A2,B2,C2 axis (Note 2) general-purpose,	MANUAL SCAN drive select axis signal		
10	In	SIGNAL IN21 / SEL D	synchronous start signal			
11	0u t	SIGNAL OUT10		value after resetting: X1CNTINT)		
12	Out	SIGNAL OUT11	X1,Y1,Z1,A1,B1,C1 axis status output signal (Note 3) (The initial value after resetting: Y1CNTINT)			
13	0u t	SIGNAL OUT20	(The initial value after resetting: X2CNTINT)			
14	Out	SIGNAL OUT21	X2,Y2,Z2,A2,B2,C2 axis status output signal (Note 3) (The initial value after resetting: Y2CNTINT)			
15	-	D.GND	GND(internal +5V GND)			
16	Out	+5V	Internal +5V			
17	In	SSO	Invalid MANUAL SCAN drive acceleration/ deceleration command signal (General-purpose sensor signal) (Note4)			
18	In	SS1				
19	0u t	MAN RDY	Permission signal switching MANUAL mod	e (Note 1)		
20	-	D.GND GND(internal +5V GND)				


2-6. Input and Output Specifications

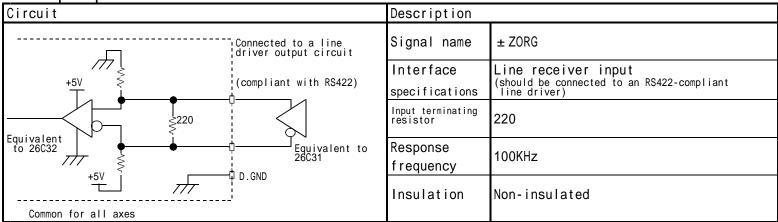
(1) Output specifications

Output specifications 1

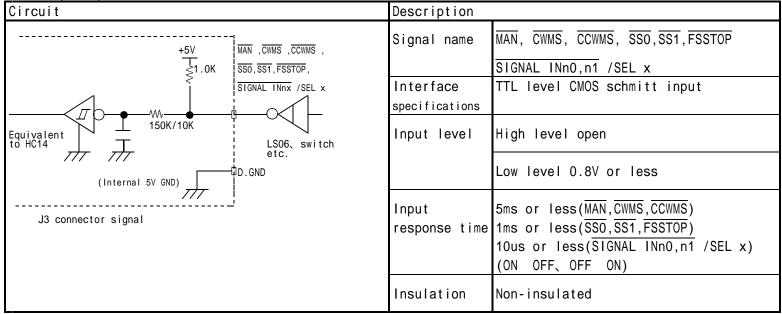
Output specifications 2



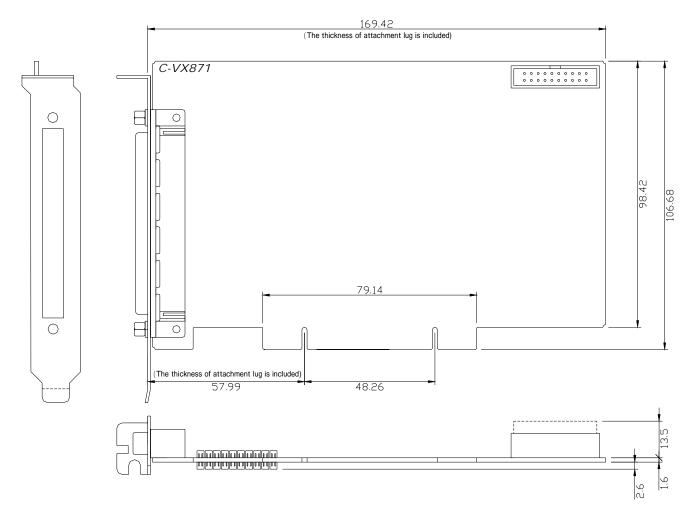
Output specifications 3(Applied function)


Circuit	Description		
(Intern <u>al</u> 5V)	Signal name	SIGNAL OUTn0,n1	
(Polyswitch) USIGNAL OUTnx	Interface voltage	+30V or less	
Equivalent to LS06 (Trigger output etc. to external equipment)	Output method	Open collector output	
(Internal 5V GND)	Output current	ON :10mA(Vce = 0.6V or less) OFF :0.3mA or less	
J3 connector signal	Output response time	1 μs or less (A latch and output time width can be set for output.) (ON OFF、OFF ON)	
	Insulation	Non-insulated	

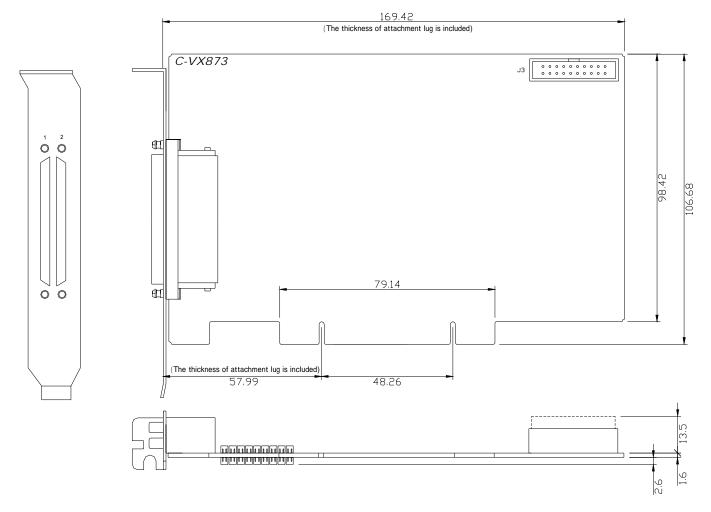
(2) Input specifications


Input specifications 1

Input specifications 2



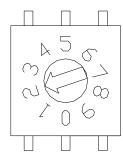
Input specifications 3 (Applied function)



2-7. Outside Dimensions

C-VX871

C-VX873

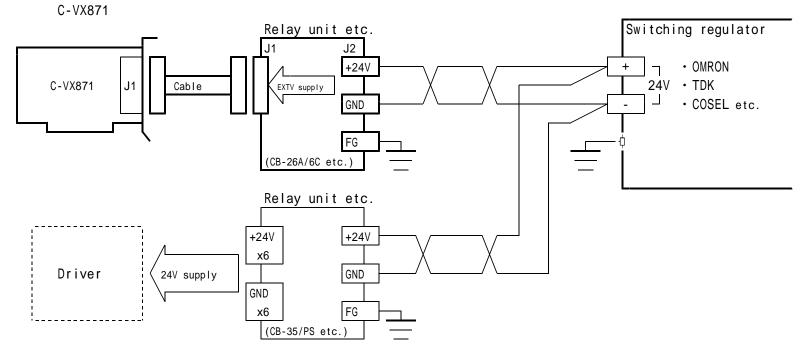

3 . SETTING

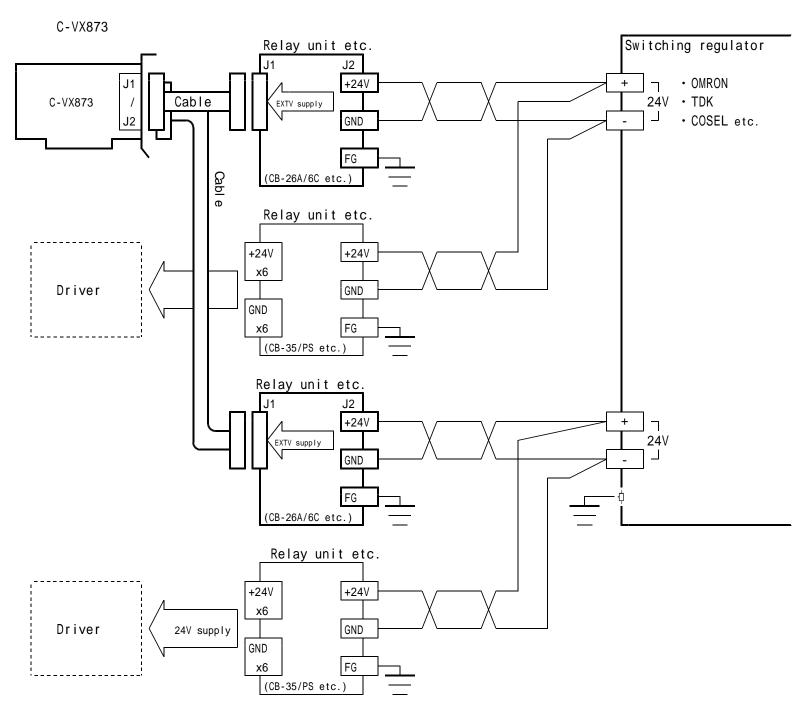
Before integrating the C-VX871,C-VX873 into the PC, set the switches on the board.

3-1. Setting the Board Number(S1)

Assign a board number to the C-VX871,C-VX873 using the rotary switch S1 on the board. (By default (before shipment from the factory), the rotary switch is bord number 1) When two or more C-VX871,C-VX873 boards are used, assign board numbers to the second and any subsequent boards in such a way that no numbers are duplicated.

The following figure shows an example in which board number 2 is assigned.

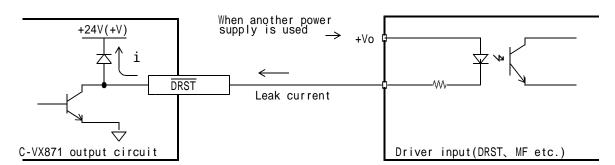



The S1 setting is validated after power-on.

Set the switch with power off, and turn it on after changing the setting.

4 . CONNECTION

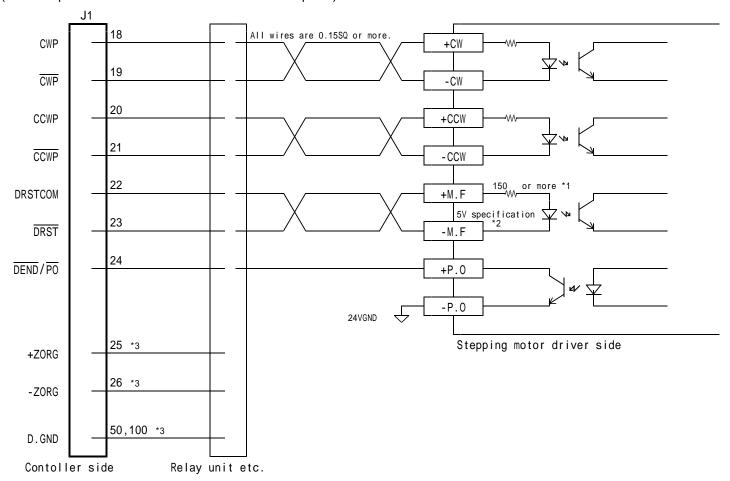
4-1. Example of user I/O Interface Power Supply Connection

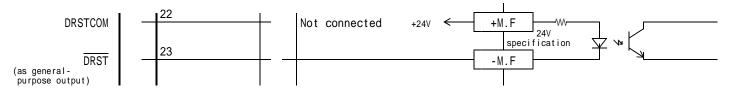

• For the user interface power supply (EXTV) of controller C-VX871, C-VX873, connect +24Vdc from the common power supply so that it turns on and off in synchronization with externally connected equipment.

For easy connection, use the optional relay unit.

• For the power supply used for the driver interface(DRST signal), use one prepared by the controller, such as DRSTCOM.

For details, refer to Section 4-2, "Examples of Connection to Drivers."

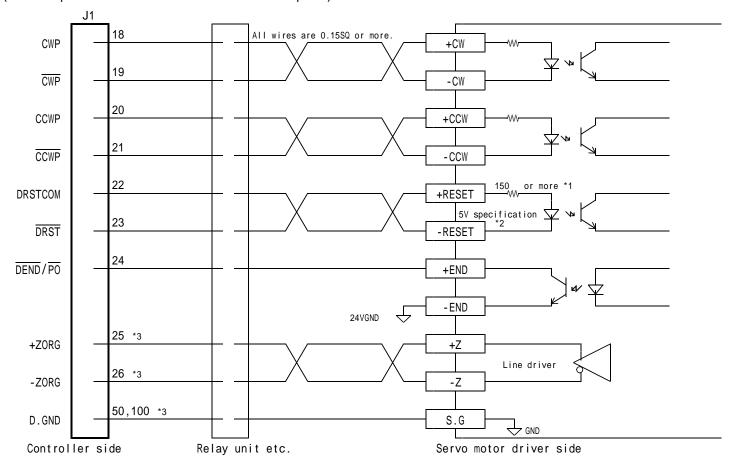

Power may be supplied to the driver from a power supply different from the C-VX871,C-VX873 such as by connecting to the DRST signal of the servo driver or motor free (MF) signal of the stepping driver. If so and power supply to the driver (+Vo) is greater than power supply to the C-VX871,C-VX873 (+V), leak current i flows through the protection diode of the output circuit and the input circuit of the connection destination may be put in the ON state.


4-2. Examples of Connectinon to Drivers

(1) Example of connection to the stepping motor driver

(x axis pin numbers are used in this example.)

- *1 If the current limiting resistor on the driver side is less than 150 , externally add resistor so that the total resistor value becomes 150 or more.
- *2 When the input circuit uses a +24V interface, the connection is as follows:



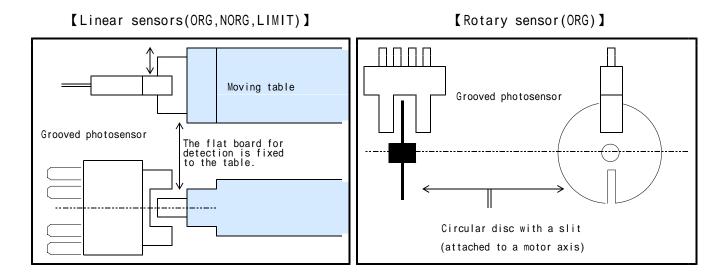
*3 The signal is connected when the encorder is used.

Example of connection refers to "Example of connection to the servo motor driver".

(2) Examples of Connection to the servo motor driver

(X axis pin numbers are used in this sample.)

- *1 If the current limiting resistor on the driver side is less than 150 , externally add resistor so that the total resistor value becomes 150 or more.
- $^{*}2$ When input circuit of the servo driver uses a +24V interface, the connection is as follows:

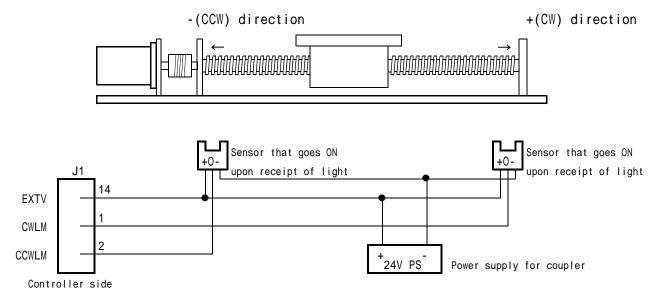


*3 The signal is connected when the encorder signal is used.

Connect the encorder signal to the line driver output circuit.

4-3. Examples of Connection to Sensor

(1) Example of sensor attachment(photosensor)

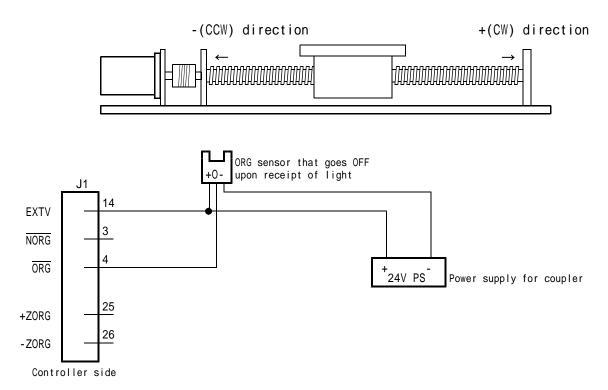

Example of recommended sensors

Sensor that goes	s OFF upon receipt of light	Sensor that goes	s ON upon receipt of light	Remarks(Reference: Consumption	
Maker	Rating	Maker	Rating	current and type)	
SUNX	PM- 24	SUNX	PM- 24	15mA or less • NPN Type	
	PM- 44		PM- 44	15mA or less • NPN Type	
	PM- 54		PM- 54	15mA or less · NPN Type	
	PM- 64		PM- 64	15mA or less • NPN Type	
OMRON	EE-SX910R	OMRON	EE-SX910R	15mA or less • NPN Type	

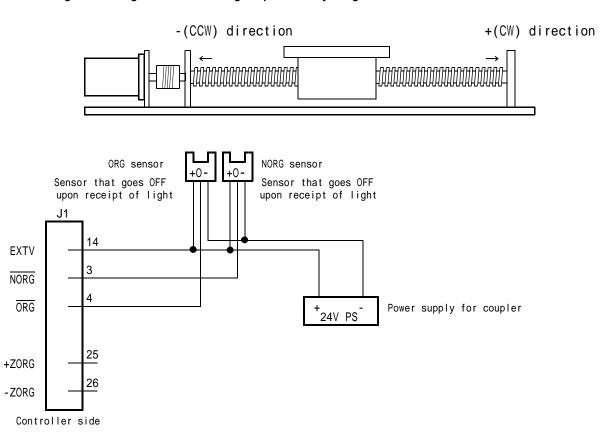
[•] Please contact us, when you use sensors other than the above. (example: large 35mA article of consumption current etc.)

(2) Example of connection to a limit sensor

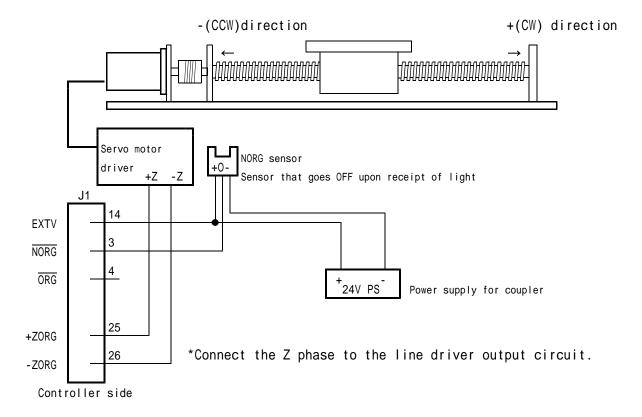
X axis pin number are used in this example.

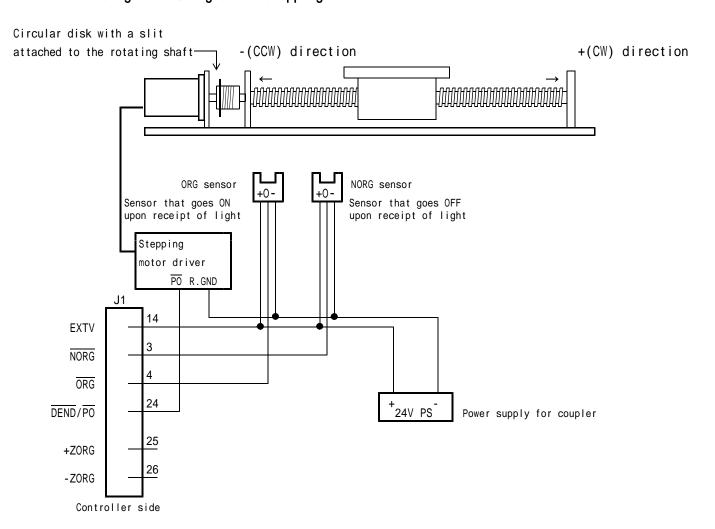


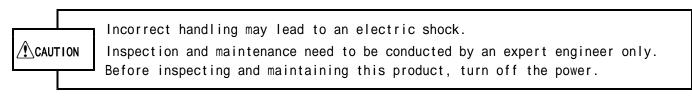
- The initial value of the limit signal is active-off (B contact) input. Even when the limit signal is not used, the limit signal input must be connected to GND in order to output pulses.
 - * Input logic of the limit signal can be switched. (Applied function)

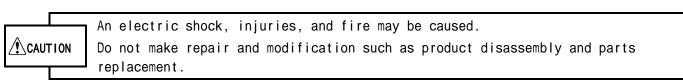

(3) Example of connection to an origin sensor

X axis pin numbers are used in this example.


When using the origin sensor only


When using the origin sensor+origin proximity signal


When using the Z-phase signal of an encoder



When using the PO signal of stepping motor driver

5 . Maintenance

5-1. Maintenance and Inspection

(1) Cleaning method

To use the product in a favorable condition, conduct cycleic cleaning as follows.

- During the cleaning of the terminal plating part, wipe it with a dry, soft cloth.
- If stain is not removed by the dry wiping, soak a cloth in a solution in which neutral detergent is diluted, wring it out, and wipe off the stain with it.
- Do not use a high-volatile solvent such as benzene and thinner, and a wipe. This may deteriorate gold plating by transformation and oxidation.

(2) Inspection method

To use the product in a favorable condition, conduct periodic inspection.

Usually conduct the inspection every six months or every year.

To use the product in an extremely hot and humid or dusty environment, shorten the inspection interval

Inspection item	Inspection details	Criteria	Inspection method
Environment state	Check whether ambient and intra-device temperatures are appropriate.	0~+ 45	Thermometer
State	Check whether ambient and intra-device humidifies are appropriate.	10%~80%RH(without dew condensation)	Hygrometer
	Check whether dust is deposited.	No dust	Visual check
Installation	Check whether the product is firmly secured.	Not loose(6kg·cm)	Torque wrench
state	Check whether connectors are completely inserted.	Not loose and removed	Visual check
	Check whether cables are to be removed.	Not loose and removed	Visual check
	Check whether connecting cables are to be broken.	Appearance is normal.	Visual check

(3) Replacement method

If the product becomes faulty, repair it immediately because the entire device system may be affected.

To make the repair smoothly, a spare product should be prepared.

- To prevent an accident such as an electric shock during replacement, stop the device and turn off the power.
- If poor contacting is assumed, wipe contacts with a clean cotton cloth that is wet with industrial alcohol.
- Take a record of switch settings during replacement and return them to their state before the replacement.
- · After the replacement, confirm that the new product is normal.
- For the faulty product replaced, have it repaired by returning it to the company with a report indicating as much details on the failure as possible.

5-2. Saving and Disposal

(1) Saving method

Save the product in the following environment.

- Indoor (place in which the product is not in the path of direct sunlight)
- · Place at ambient temperature and humidity within the specifications
- · Place free of corrosive and inflammable gases
- · Place free of dust, dirt, salt, and iron powder
- · Place free of direct vibration and shock to the product body
- · Place free of water, oil, and chemicals droplets
- · Place where a person cannot ride or put objects on the product

(2) Disposal method

Handle the product as industrial waste.

6 . Conforming to Europe standards

6-1. Low Voltage Directive

The product does not cover low voltagae directive on the conditions as follows:

The product is placed in the PC(Enclosure) declared CE marking.

And the control power of PCI bus is fed by the PC.

The power of the interface +24V is fed by the direct current power which primary and secondary are reinforced insulation.

A signal should interface using the motor drivers with which strengthening insulation of a primary side and the secondary side was carried out. Or a signal should interface between the motor drivers with which a primary and secondary side is supplied by the power supply by which strengthening insulation was carried out.

6-2. EMC Directive

The product declare CE marking based on EMC(2004/108/EC) Directive.

Please contact our company about E6 series cable when conforming CE Marking.

Applicable standards

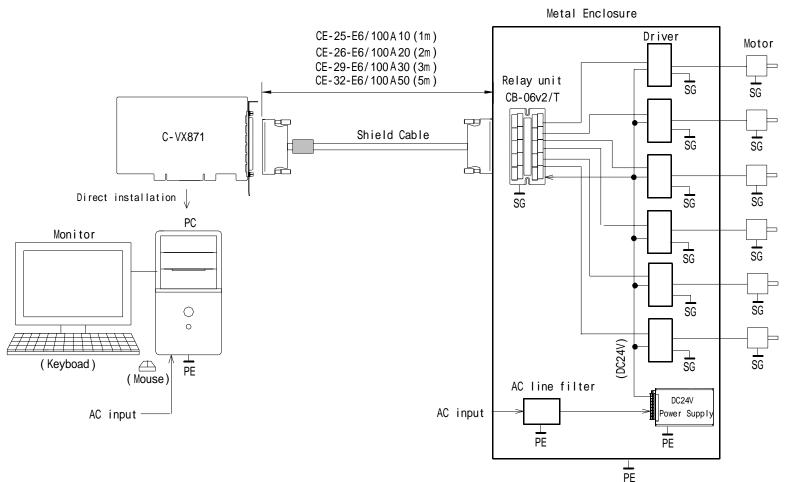
EN61000-6-4

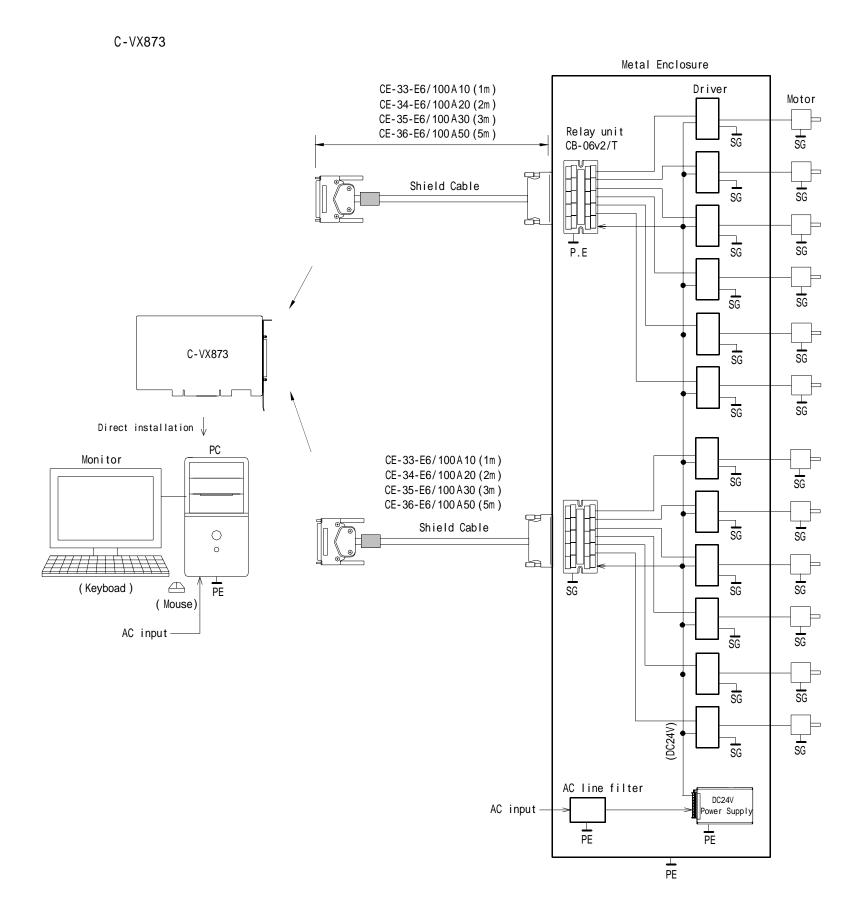
EN61000-6-2

EN61000-3-2

EN61000-3-3

The product is tested for EMC mesurement by EMC mesurement facilities.


EMC is changed by the equipment configuration including controllers and motor drivers.


Be sure to test EMC mesurement in the condition installed in the final equipment.

Configuration

The metalic enclosure (Metal Enclosure) and a metaled shielded cable (with a ferrite core) work to shield noise.

C-VX871

The main parts which revised by this manual

Parts	Content
None	

Technical Service

TEL.(042)664-5382 FAX.(042)666-5664 E-mail s-support@melec-inc.com

Sales and Service

TEL.(042)664-5384 FAX.(042)666-2031 URL:http://www.melec-inc.com

Melec Inc. Control equipment marketing department 516-10, Higashiasakawa-cho, Hachioji-shi, Tokyo 193-0834, Japan